tracy/server/TracyView_ContextSwitch.cpp
2022-07-02 13:37:04 +02:00

131 lines
4.8 KiB
C++

#include "TracyView.hpp"
namespace tracy
{
const char* View::DecodeContextSwitchReasonCode( uint8_t reason )
{
switch( reason )
{
case 0: return "Executive";
case 1: return "FreePage";
case 2: return "PageIn";
case 3: return "PoolAllocation";
case 4: return "DelayExecution";
case 5: return "Suspended";
case 6: return "UserRequest";
case 7: return "WrExecutive";
case 8: return "WrFreePage";
case 9: return "WrPageIn";
case 10: return "WrPoolAllocation";
case 11: return "WrDelayExecution";
case 12: return "WrSuspended";
case 13: return "WrUserRequest";
case 14: return "WrEventPair";
case 15: return "WrQueue";
case 16: return "WrLpcReceive";
case 17: return "WrLpcReply";
case 18: return "WrVirtualMemory";
case 19: return "WrPageOut";
case 20: return "WrRendezvous";
case 21: return "WrKeyedEvent";
case 22: return "WrTerminated";
case 23: return "WrProcessInSwap";
case 24: return "WrCpuRateControl";
case 25: return "WrCalloutStack";
case 26: return "WrKernel";
case 27: return "WrResource";
case 28: return "WrPushLock";
case 29: return "WrMutex";
case 30: return "WrQuantumEnd";
case 31: return "WrDispatchInt";
case 32: return "WrPreempted";
case 33: return "WrYieldExecution";
case 34: return "WrFastMutex";
case 35: return "WrGuardedMutex";
case 36: return "WrRundown";
case 37: return "WrAlertByThreadId";
case 38: return "WrDeferredPreempt";
case 39: return "WrPhysicalFault";
case 40: return "MaximumWaitReason";
default: return "unknown";
}
}
const char* View::DecodeContextSwitchReason( uint8_t reason )
{
switch( reason )
{
case 0: return "(Thread is waiting for the scheduler)";
case 1: return "(Thread is waiting for a free virtual memory page)";
case 2: return "(Thread is waiting for a virtual memory page to arrive in memory)";
case 4: return "(Thread execution is delayed)";
case 5: return "(Thread execution is suspended)";
case 6: return "(Thread is waiting on object - WaitForSingleObject, etc.)";
case 7: return "(Thread is waiting for the scheduler)";
case 8: return "(Thread is waiting for a free virtual memory page)";
case 9: return "(Thread is waiting for a virtual memory page to arrive in memory)";
case 11: return "(Thread execution is delayed)";
case 12: return "(Thread execution is suspended)";
case 13: return "(Thread is waiting for window messages)";
case 15: return "(Thread is waiting on KQUEUE)";
case 24: return "(CPU rate limiting)";
case 34: return "(Waiting for a Fast Mutex)";
default: return "";
}
}
const char* View::DecodeContextSwitchStateCode( uint8_t state )
{
switch( state )
{
case 0: return "Initialized";
case 1: return "Ready";
case 2: return "Running";
case 3: return "Standby";
case 4: return "Terminated";
case 5: return "Waiting";
case 6: return "Transition";
case 7: return "DeferredReady";
case 101: return "D (disk sleep)";
case 102: return "I (idle)";
case 103: return "R (running)";
case 104: return "S (sleeping)";
case 105: return "T (stopped)";
case 106: return "t (tracing stop)";
case 107: return "W";
case 108: return "X (dead)";
case 109: return "Z (zombie)";
case 110: return "P (parked)";
default: return "unknown";
}
}
const char* View::DecodeContextSwitchState( uint8_t state )
{
switch( state )
{
case 0: return "(Thread has been initialized, but has not yet started)";
case 1: return "(Thread is waiting to use a processor because no processor is free. The thread is prepared to run on the next available processor)";
case 2: return "(Thread is currently using a processor)";
case 3: return "(Thread is about to use a processor)";
case 4: return "(Thread has finished executing and has exited)";
case 5: return "(Thread is not ready to use the processor because it is waiting for a peripheral operation to complete or a resource to become free)";
case 6: return "(Thread is waiting for a resource, other than the processor, before it can execute)";
case 7: return "(Thread has been selected to run on a specific processor but have not yet beed scheduled)";
case 101: return "(Uninterruptible sleep, usually IO)";
case 102: return "(Idle kernel thread)";
case 103: return "(Running or on run queue)";
case 104: return "(Interruptible sleep, waiting for an event to complete)";
case 105: return "(Stopped by job control signal)";
case 106: return "(Stopped by debugger during the tracing)";
case 107: return "(Paging)";
case 108: return "(Dead task is scheduling one last time)";
case 109: return "(Zombie process)";
case 110: return "(Parked)";
default: return "";
}
}
}