mirror of
https://github.com/wolfpld/tracy.git
synced 2024-11-10 10:41:50 +00:00
1127 lines
36 KiB
C++
1127 lines
36 KiB
C++
// Simplified BSD License:
|
|
//
|
|
// Copyright (c) 2013-2021, Cameron Desrochers
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// - Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
// - Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
// conditions and the following disclaimer in the documentation and/or other materials
|
|
// provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
// OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
|
// TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// ©2013-2020 Cameron Desrochers.
|
|
// Distributed under the simplified BSD license (see the license file that
|
|
// should have come with this header).
|
|
|
|
// atomicops.h
|
|
|
|
// ©2013-2016 Cameron Desrochers.
|
|
// Distributed under the simplified BSD license (see the license file that
|
|
// should have come with this header).
|
|
|
|
#pragma once
|
|
|
|
// Provides portable (VC++2010+, Intel ICC 13, GCC 4.7+, and anything C++11 compliant) implementation
|
|
// of low-level memory barriers, plus a few semi-portable utility macros (for inlining and alignment).
|
|
// Also has a basic atomic type (limited to hardware-supported atomics with no memory ordering guarantees).
|
|
// Uses the AE_* prefix for macros (historical reasons), and the "moodycamel" namespace for symbols.
|
|
|
|
#include <cerrno>
|
|
#include <cassert>
|
|
#include <type_traits>
|
|
#include <cerrno>
|
|
#include <cstdint>
|
|
#include <ctime>
|
|
|
|
// Platform detection
|
|
#if defined(__INTEL_COMPILER)
|
|
#define AE_ICC
|
|
#elif defined(_MSC_VER)
|
|
#define AE_VCPP
|
|
#elif defined(__GNUC__)
|
|
#define AE_GCC
|
|
#endif
|
|
|
|
#if defined(_M_IA64) || defined(__ia64__)
|
|
#define AE_ARCH_IA64
|
|
#elif defined(_WIN64) || defined(__amd64__) || defined(_M_X64) || defined(__x86_64__)
|
|
#define AE_ARCH_X64
|
|
#elif defined(_M_IX86) || defined(__i386__)
|
|
#define AE_ARCH_X86
|
|
#elif defined(_M_PPC) || defined(__powerpc__)
|
|
#define AE_ARCH_PPC
|
|
#else
|
|
#define AE_ARCH_UNKNOWN
|
|
#endif
|
|
|
|
|
|
// AE_UNUSED
|
|
#define AE_UNUSED(x) ((void)x)
|
|
|
|
// AE_NO_TSAN
|
|
#if defined(__has_feature)
|
|
#if __has_feature(thread_sanitizer)
|
|
#define AE_NO_TSAN __attribute__((no_sanitize("thread")))
|
|
#else
|
|
#define AE_NO_TSAN
|
|
#endif
|
|
#else
|
|
#define AE_NO_TSAN
|
|
#endif
|
|
|
|
|
|
// AE_FORCEINLINE
|
|
#if defined(AE_VCPP) || defined(AE_ICC)
|
|
#define AE_FORCEINLINE __forceinline
|
|
#elif defined(AE_GCC)
|
|
//#define AE_FORCEINLINE __attribute__((always_inline))
|
|
#define AE_FORCEINLINE inline
|
|
#else
|
|
#define AE_FORCEINLINE inline
|
|
#endif
|
|
|
|
|
|
// AE_ALIGN
|
|
#if defined(AE_VCPP) || defined(AE_ICC)
|
|
#define AE_ALIGN(x) __declspec(align(x))
|
|
#elif defined(AE_GCC)
|
|
#define AE_ALIGN(x) __attribute__((aligned(x)))
|
|
#else
|
|
// Assume GCC compliant syntax...
|
|
#define AE_ALIGN(x) __attribute__((aligned(x)))
|
|
#endif
|
|
|
|
|
|
// Portable atomic fences implemented below:
|
|
|
|
namespace tracy {
|
|
|
|
enum memory_order {
|
|
memory_order_relaxed,
|
|
memory_order_acquire,
|
|
memory_order_release,
|
|
memory_order_acq_rel,
|
|
memory_order_seq_cst,
|
|
|
|
// memory_order_sync: Forces a full sync:
|
|
// #LoadLoad, #LoadStore, #StoreStore, and most significantly, #StoreLoad
|
|
memory_order_sync = memory_order_seq_cst
|
|
};
|
|
|
|
} // end namespace moodycamel
|
|
|
|
#if (defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))) || (defined(AE_ICC) && __INTEL_COMPILER < 1600)
|
|
// VS2010 and ICC13 don't support std::atomic_*_fence, implement our own fences
|
|
|
|
#include <intrin.h>
|
|
|
|
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
|
#define AeFullSync _mm_mfence
|
|
#define AeLiteSync _mm_mfence
|
|
#elif defined(AE_ARCH_IA64)
|
|
#define AeFullSync __mf
|
|
#define AeLiteSync __mf
|
|
#elif defined(AE_ARCH_PPC)
|
|
#include <ppcintrinsics.h>
|
|
#define AeFullSync __sync
|
|
#define AeLiteSync __lwsync
|
|
#endif
|
|
|
|
|
|
#ifdef AE_VCPP
|
|
#pragma warning(push)
|
|
#pragma warning(disable: 4365) // Disable erroneous 'conversion from long to unsigned int, signed/unsigned mismatch' error when using `assert`
|
|
#ifdef __cplusplus_cli
|
|
#pragma managed(push, off)
|
|
#endif
|
|
#endif
|
|
|
|
namespace tracy {
|
|
|
|
AE_FORCEINLINE void compiler_fence(memory_order order) AE_NO_TSAN
|
|
{
|
|
switch (order) {
|
|
case memory_order_relaxed: break;
|
|
case memory_order_acquire: _ReadBarrier(); break;
|
|
case memory_order_release: _WriteBarrier(); break;
|
|
case memory_order_acq_rel: _ReadWriteBarrier(); break;
|
|
case memory_order_seq_cst: _ReadWriteBarrier(); break;
|
|
default: assert(false);
|
|
}
|
|
}
|
|
|
|
// x86/x64 have a strong memory model -- all loads and stores have
|
|
// acquire and release semantics automatically (so only need compiler
|
|
// barriers for those).
|
|
#if defined(AE_ARCH_X86) || defined(AE_ARCH_X64)
|
|
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN
|
|
{
|
|
switch (order) {
|
|
case memory_order_relaxed: break;
|
|
case memory_order_acquire: _ReadBarrier(); break;
|
|
case memory_order_release: _WriteBarrier(); break;
|
|
case memory_order_acq_rel: _ReadWriteBarrier(); break;
|
|
case memory_order_seq_cst:
|
|
_ReadWriteBarrier();
|
|
AeFullSync();
|
|
_ReadWriteBarrier();
|
|
break;
|
|
default: assert(false);
|
|
}
|
|
}
|
|
#else
|
|
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN
|
|
{
|
|
// Non-specialized arch, use heavier memory barriers everywhere just in case :-(
|
|
switch (order) {
|
|
case memory_order_relaxed:
|
|
break;
|
|
case memory_order_acquire:
|
|
_ReadBarrier();
|
|
AeLiteSync();
|
|
_ReadBarrier();
|
|
break;
|
|
case memory_order_release:
|
|
_WriteBarrier();
|
|
AeLiteSync();
|
|
_WriteBarrier();
|
|
break;
|
|
case memory_order_acq_rel:
|
|
_ReadWriteBarrier();
|
|
AeLiteSync();
|
|
_ReadWriteBarrier();
|
|
break;
|
|
case memory_order_seq_cst:
|
|
_ReadWriteBarrier();
|
|
AeFullSync();
|
|
_ReadWriteBarrier();
|
|
break;
|
|
default: assert(false);
|
|
}
|
|
}
|
|
#endif
|
|
} // end namespace moodycamel
|
|
#else
|
|
// Use standard library of atomics
|
|
#include <atomic>
|
|
|
|
namespace tracy {
|
|
|
|
AE_FORCEINLINE void compiler_fence(memory_order order) AE_NO_TSAN
|
|
{
|
|
switch (order) {
|
|
case memory_order_relaxed: break;
|
|
case memory_order_acquire: std::atomic_signal_fence(std::memory_order_acquire); break;
|
|
case memory_order_release: std::atomic_signal_fence(std::memory_order_release); break;
|
|
case memory_order_acq_rel: std::atomic_signal_fence(std::memory_order_acq_rel); break;
|
|
case memory_order_seq_cst: std::atomic_signal_fence(std::memory_order_seq_cst); break;
|
|
default: assert(false);
|
|
}
|
|
}
|
|
|
|
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN
|
|
{
|
|
switch (order) {
|
|
case memory_order_relaxed: break;
|
|
case memory_order_acquire: std::atomic_thread_fence(std::memory_order_acquire); break;
|
|
case memory_order_release: std::atomic_thread_fence(std::memory_order_release); break;
|
|
case memory_order_acq_rel: std::atomic_thread_fence(std::memory_order_acq_rel); break;
|
|
case memory_order_seq_cst: std::atomic_thread_fence(std::memory_order_seq_cst); break;
|
|
default: assert(false);
|
|
}
|
|
}
|
|
|
|
} // end namespace moodycamel
|
|
|
|
#endif
|
|
|
|
|
|
#if !defined(AE_VCPP) || (_MSC_VER >= 1700 && !defined(__cplusplus_cli))
|
|
#define AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
|
#endif
|
|
|
|
#ifdef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
|
#include <atomic>
|
|
#endif
|
|
#include <utility>
|
|
|
|
// WARNING: *NOT* A REPLACEMENT FOR std::atomic. READ CAREFULLY:
|
|
// Provides basic support for atomic variables -- no memory ordering guarantees are provided.
|
|
// The guarantee of atomicity is only made for types that already have atomic load and store guarantees
|
|
// at the hardware level -- on most platforms this generally means aligned pointers and integers (only).
|
|
namespace tracy {
|
|
template<typename T>
|
|
class weak_atomic
|
|
{
|
|
public:
|
|
AE_NO_TSAN weak_atomic() : value() { }
|
|
#ifdef AE_VCPP
|
|
#pragma warning(push)
|
|
#pragma warning(disable: 4100) // Get rid of (erroneous) 'unreferenced formal parameter' warning
|
|
#endif
|
|
template<typename U> AE_NO_TSAN weak_atomic(U&& x) : value(std::forward<U>(x)) { }
|
|
#ifdef __cplusplus_cli
|
|
// Work around bug with universal reference/nullptr combination that only appears when /clr is on
|
|
AE_NO_TSAN weak_atomic(nullptr_t) : value(nullptr) { }
|
|
#endif
|
|
AE_NO_TSAN weak_atomic(weak_atomic const& other) : value(other.load()) { }
|
|
AE_NO_TSAN weak_atomic(weak_atomic&& other) : value(std::move(other.load())) { }
|
|
#ifdef AE_VCPP
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
AE_FORCEINLINE operator T() const AE_NO_TSAN { return load(); }
|
|
|
|
|
|
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
|
template<typename U> AE_FORCEINLINE weak_atomic const& operator=(U&& x) AE_NO_TSAN { value = std::forward<U>(x); return *this; }
|
|
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) AE_NO_TSAN { value = other.value; return *this; }
|
|
|
|
AE_FORCEINLINE T load() const AE_NO_TSAN { return value; }
|
|
|
|
AE_FORCEINLINE T fetch_add_acquire(T increment) AE_NO_TSAN
|
|
{
|
|
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
|
if (sizeof(T) == 4) return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
|
|
#if defined(_M_AMD64)
|
|
else if (sizeof(T) == 8) return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
|
|
#endif
|
|
#else
|
|
#error Unsupported platform
|
|
#endif
|
|
assert(false && "T must be either a 32 or 64 bit type");
|
|
return value;
|
|
}
|
|
|
|
AE_FORCEINLINE T fetch_add_release(T increment) AE_NO_TSAN
|
|
{
|
|
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
|
if (sizeof(T) == 4) return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
|
|
#if defined(_M_AMD64)
|
|
else if (sizeof(T) == 8) return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
|
|
#endif
|
|
#else
|
|
#error Unsupported platform
|
|
#endif
|
|
assert(false && "T must be either a 32 or 64 bit type");
|
|
return value;
|
|
}
|
|
#else
|
|
template<typename U>
|
|
AE_FORCEINLINE weak_atomic const& operator=(U&& x) AE_NO_TSAN
|
|
{
|
|
value.store(std::forward<U>(x), std::memory_order_relaxed);
|
|
return *this;
|
|
}
|
|
|
|
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) AE_NO_TSAN
|
|
{
|
|
value.store(other.value.load(std::memory_order_relaxed), std::memory_order_relaxed);
|
|
return *this;
|
|
}
|
|
|
|
AE_FORCEINLINE T load() const AE_NO_TSAN { return value.load(std::memory_order_relaxed); }
|
|
|
|
AE_FORCEINLINE T fetch_add_acquire(T increment) AE_NO_TSAN
|
|
{
|
|
return value.fetch_add(increment, std::memory_order_acquire);
|
|
}
|
|
|
|
AE_FORCEINLINE T fetch_add_release(T increment) AE_NO_TSAN
|
|
{
|
|
return value.fetch_add(increment, std::memory_order_release);
|
|
}
|
|
#endif
|
|
|
|
|
|
private:
|
|
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
|
// No std::atomic support, but still need to circumvent compiler optimizations.
|
|
// `volatile` will make memory access slow, but is guaranteed to be reliable.
|
|
volatile T value;
|
|
#else
|
|
std::atomic<T> value;
|
|
#endif
|
|
};
|
|
|
|
} // end namespace moodycamel
|
|
|
|
|
|
#if defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))
|
|
#pragma warning(pop)
|
|
#ifdef __cplusplus_cli
|
|
#pragma managed(pop)
|
|
#endif
|
|
#endif
|
|
|
|
// end of atomicops.h
|
|
|
|
#include <new>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <cassert>
|
|
#include <stdexcept>
|
|
#include <new>
|
|
#include <cstdint>
|
|
#include <cstdlib> // For malloc/free/abort & size_t
|
|
#include <memory>
|
|
#if __cplusplus > 199711L || _MSC_VER >= 1700 // C++11 or VS2012
|
|
#include <chrono>
|
|
#endif
|
|
|
|
|
|
// A lock-free queue for a single-consumer, single-producer architecture.
|
|
// The queue is also wait-free in the common path (except if more memory
|
|
// needs to be allocated, in which case malloc is called).
|
|
// Allocates memory sparingly, and only once if the original maximum size
|
|
// estimate is never exceeded.
|
|
// Tested on x86/x64 processors, but semantics should be correct for all
|
|
// architectures (given the right implementations in atomicops.h), provided
|
|
// that aligned integer and pointer accesses are naturally atomic.
|
|
// Note that there should only be one consumer thread and producer thread;
|
|
// Switching roles of the threads, or using multiple consecutive threads for
|
|
// one role, is not safe unless properly synchronized.
|
|
// Using the queue exclusively from one thread is fine, though a bit silly.
|
|
|
|
#ifndef MOODYCAMEL_CACHE_LINE_SIZE
|
|
#define MOODYCAMEL_CACHE_LINE_SIZE 64
|
|
#endif
|
|
|
|
#ifndef MOODYCAMEL_EXCEPTIONS_ENABLED
|
|
#if (defined(_MSC_VER) && defined(_CPPUNWIND)) || (defined(__GNUC__) && defined(__EXCEPTIONS)) || (!defined(_MSC_VER) && !defined(__GNUC__))
|
|
#define MOODYCAMEL_EXCEPTIONS_ENABLED
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef MOODYCAMEL_HAS_EMPLACE
|
|
#if !defined(_MSC_VER) || _MSC_VER >= 1800 // variadic templates: either a non-MS compiler or VS >= 2013
|
|
#define MOODYCAMEL_HAS_EMPLACE 1
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE
|
|
#if defined (__APPLE__) && defined (__MACH__) && __cplusplus >= 201703L
|
|
// This is required to find out what deployment target we are using
|
|
#include <CoreFoundation/CoreFoundation.h>
|
|
#if !defined(MAC_OS_X_VERSION_MIN_REQUIRED) || MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_14
|
|
// C++17 new(size_t, align_val_t) is not backwards-compatible with older versions of macOS, so we can't support over-alignment in this case
|
|
#define MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE
|
|
#define MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE AE_ALIGN(MOODYCAMEL_CACHE_LINE_SIZE)
|
|
#endif
|
|
|
|
#ifdef AE_VCPP
|
|
#pragma warning(push)
|
|
#pragma warning(disable: 4324) // structure was padded due to __declspec(align())
|
|
#pragma warning(disable: 4820) // padding was added
|
|
#pragma warning(disable: 4127) // conditional expression is constant
|
|
#endif
|
|
|
|
namespace tracy {
|
|
|
|
template<typename T, size_t MAX_BLOCK_SIZE = 512>
|
|
class MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE ReaderWriterQueue
|
|
{
|
|
// Design: Based on a queue-of-queues. The low-level queues are just
|
|
// circular buffers with front and tail indices indicating where the
|
|
// next element to dequeue is and where the next element can be enqueued,
|
|
// respectively. Each low-level queue is called a "block". Each block
|
|
// wastes exactly one element's worth of space to keep the design simple
|
|
// (if front == tail then the queue is empty, and can't be full).
|
|
// The high-level queue is a circular linked list of blocks; again there
|
|
// is a front and tail, but this time they are pointers to the blocks.
|
|
// The front block is where the next element to be dequeued is, provided
|
|
// the block is not empty. The back block is where elements are to be
|
|
// enqueued, provided the block is not full.
|
|
// The producer thread owns all the tail indices/pointers. The consumer
|
|
// thread owns all the front indices/pointers. Both threads read each
|
|
// other's variables, but only the owning thread updates them. E.g. After
|
|
// the consumer reads the producer's tail, the tail may change before the
|
|
// consumer is done dequeuing an object, but the consumer knows the tail
|
|
// will never go backwards, only forwards.
|
|
// If there is no room to enqueue an object, an additional block (of
|
|
// equal size to the last block) is added. Blocks are never removed.
|
|
|
|
public:
|
|
typedef T value_type;
|
|
|
|
// Constructs a queue that can hold at least `size` elements without further
|
|
// allocations. If more than MAX_BLOCK_SIZE elements are requested,
|
|
// then several blocks of MAX_BLOCK_SIZE each are reserved (including
|
|
// at least one extra buffer block).
|
|
AE_NO_TSAN explicit ReaderWriterQueue(size_t size = 15)
|
|
#ifndef NDEBUG
|
|
: enqueuing(false)
|
|
,dequeuing(false)
|
|
#endif
|
|
{
|
|
assert(MAX_BLOCK_SIZE == ceilToPow2(MAX_BLOCK_SIZE) && "MAX_BLOCK_SIZE must be a power of 2");
|
|
assert(MAX_BLOCK_SIZE >= 2 && "MAX_BLOCK_SIZE must be at least 2");
|
|
|
|
Block* firstBlock = nullptr;
|
|
|
|
largestBlockSize = ceilToPow2(size + 1); // We need a spare slot to fit size elements in the block
|
|
if (largestBlockSize > MAX_BLOCK_SIZE * 2) {
|
|
// We need a spare block in case the producer is writing to a different block the consumer is reading from, and
|
|
// wants to enqueue the maximum number of elements. We also need a spare element in each block to avoid the ambiguity
|
|
// between front == tail meaning "empty" and "full".
|
|
// So the effective number of slots that are guaranteed to be usable at any time is the block size - 1 times the
|
|
// number of blocks - 1. Solving for size and applying a ceiling to the division gives us (after simplifying):
|
|
size_t initialBlockCount = (size + MAX_BLOCK_SIZE * 2 - 3) / (MAX_BLOCK_SIZE - 1);
|
|
largestBlockSize = MAX_BLOCK_SIZE;
|
|
Block* lastBlock = nullptr;
|
|
for (size_t i = 0; i != initialBlockCount; ++i) {
|
|
auto block = make_block(largestBlockSize);
|
|
if (block == nullptr) {
|
|
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
|
throw std::bad_alloc();
|
|
#else
|
|
abort();
|
|
#endif
|
|
}
|
|
if (firstBlock == nullptr) {
|
|
firstBlock = block;
|
|
}
|
|
else {
|
|
lastBlock->next = block;
|
|
}
|
|
lastBlock = block;
|
|
block->next = firstBlock;
|
|
}
|
|
}
|
|
else {
|
|
firstBlock = make_block(largestBlockSize);
|
|
if (firstBlock == nullptr) {
|
|
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
|
throw std::bad_alloc();
|
|
#else
|
|
abort();
|
|
#endif
|
|
}
|
|
firstBlock->next = firstBlock;
|
|
}
|
|
frontBlock = firstBlock;
|
|
tailBlock = firstBlock;
|
|
|
|
// Make sure the reader/writer threads will have the initialized memory setup above:
|
|
fence(memory_order_sync);
|
|
}
|
|
|
|
// Note: The queue should not be accessed concurrently while it's
|
|
// being moved. It's up to the user to synchronize this.
|
|
AE_NO_TSAN ReaderWriterQueue(ReaderWriterQueue&& other)
|
|
: frontBlock(other.frontBlock.load()),
|
|
tailBlock(other.tailBlock.load()),
|
|
largestBlockSize(other.largestBlockSize)
|
|
#ifndef NDEBUG
|
|
,enqueuing(false)
|
|
,dequeuing(false)
|
|
#endif
|
|
{
|
|
other.largestBlockSize = 32;
|
|
Block* b = other.make_block(other.largestBlockSize);
|
|
if (b == nullptr) {
|
|
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
|
throw std::bad_alloc();
|
|
#else
|
|
abort();
|
|
#endif
|
|
}
|
|
b->next = b;
|
|
other.frontBlock = b;
|
|
other.tailBlock = b;
|
|
}
|
|
|
|
// Note: The queue should not be accessed concurrently while it's
|
|
// being moved. It's up to the user to synchronize this.
|
|
ReaderWriterQueue& operator=(ReaderWriterQueue&& other) AE_NO_TSAN
|
|
{
|
|
Block* b = frontBlock.load();
|
|
frontBlock = other.frontBlock.load();
|
|
other.frontBlock = b;
|
|
b = tailBlock.load();
|
|
tailBlock = other.tailBlock.load();
|
|
other.tailBlock = b;
|
|
std::swap(largestBlockSize, other.largestBlockSize);
|
|
return *this;
|
|
}
|
|
|
|
// Note: The queue should not be accessed concurrently while it's
|
|
// being deleted. It's up to the user to synchronize this.
|
|
AE_NO_TSAN ~ReaderWriterQueue()
|
|
{
|
|
// Make sure we get the latest version of all variables from other CPUs:
|
|
fence(memory_order_sync);
|
|
|
|
// Destroy any remaining objects in queue and free memory
|
|
Block* frontBlock_ = frontBlock;
|
|
Block* block = frontBlock_;
|
|
do {
|
|
Block* nextBlock = block->next;
|
|
size_t blockFront = block->front;
|
|
size_t blockTail = block->tail;
|
|
|
|
for (size_t i = blockFront; i != blockTail; i = (i + 1) & block->sizeMask) {
|
|
auto element = reinterpret_cast<T*>(block->data + i * sizeof(T));
|
|
element->~T();
|
|
(void)element;
|
|
}
|
|
|
|
auto rawBlock = block->rawThis;
|
|
block->~Block();
|
|
std::free(rawBlock);
|
|
block = nextBlock;
|
|
} while (block != frontBlock_);
|
|
}
|
|
|
|
|
|
// Enqueues a copy of element if there is room in the queue.
|
|
// Returns true if the element was enqueued, false otherwise.
|
|
// Does not allocate memory.
|
|
AE_FORCEINLINE bool try_enqueue(T const& element) AE_NO_TSAN
|
|
{
|
|
return inner_enqueue<CannotAlloc>(element);
|
|
}
|
|
|
|
// Enqueues a moved copy of element if there is room in the queue.
|
|
// Returns true if the element was enqueued, false otherwise.
|
|
// Does not allocate memory.
|
|
AE_FORCEINLINE bool try_enqueue(T&& element) AE_NO_TSAN
|
|
{
|
|
return inner_enqueue<CannotAlloc>(std::forward<T>(element));
|
|
}
|
|
|
|
#if MOODYCAMEL_HAS_EMPLACE
|
|
// Like try_enqueue() but with emplace semantics (i.e. construct-in-place).
|
|
template<typename... Args>
|
|
AE_FORCEINLINE bool try_emplace(Args&&... args) AE_NO_TSAN
|
|
{
|
|
return inner_enqueue<CannotAlloc>(std::forward<Args>(args)...);
|
|
}
|
|
#endif
|
|
|
|
// Enqueues a copy of element on the queue.
|
|
// Allocates an additional block of memory if needed.
|
|
// Only fails (returns false) if memory allocation fails.
|
|
AE_FORCEINLINE bool enqueue(T const& element) AE_NO_TSAN
|
|
{
|
|
return inner_enqueue<CanAlloc>(element);
|
|
}
|
|
|
|
// Enqueues a moved copy of element on the queue.
|
|
// Allocates an additional block of memory if needed.
|
|
// Only fails (returns false) if memory allocation fails.
|
|
AE_FORCEINLINE bool enqueue(T&& element) AE_NO_TSAN
|
|
{
|
|
return inner_enqueue<CanAlloc>(std::forward<T>(element));
|
|
}
|
|
|
|
#if MOODYCAMEL_HAS_EMPLACE
|
|
// Like enqueue() but with emplace semantics (i.e. construct-in-place).
|
|
template<typename... Args>
|
|
AE_FORCEINLINE bool emplace(Args&&... args) AE_NO_TSAN
|
|
{
|
|
return inner_enqueue<CanAlloc>(std::forward<Args>(args)...);
|
|
}
|
|
#endif
|
|
|
|
// Attempts to dequeue an element; if the queue is empty,
|
|
// returns false instead. If the queue has at least one element,
|
|
// moves front to result using operator=, then returns true.
|
|
template<typename U>
|
|
bool try_dequeue(U& result) AE_NO_TSAN
|
|
{
|
|
#ifndef NDEBUG
|
|
ReentrantGuard guard(this->dequeuing);
|
|
#endif
|
|
|
|
// High-level pseudocode:
|
|
// Remember where the tail block is
|
|
// If the front block has an element in it, dequeue it
|
|
// Else
|
|
// If front block was the tail block when we entered the function, return false
|
|
// Else advance to next block and dequeue the item there
|
|
|
|
// Note that we have to use the value of the tail block from before we check if the front
|
|
// block is full or not, in case the front block is empty and then, before we check if the
|
|
// tail block is at the front block or not, the producer fills up the front block *and
|
|
// moves on*, which would make us skip a filled block. Seems unlikely, but was consistently
|
|
// reproducible in practice.
|
|
// In order to avoid overhead in the common case, though, we do a double-checked pattern
|
|
// where we have the fast path if the front block is not empty, then read the tail block,
|
|
// then re-read the front block and check if it's not empty again, then check if the tail
|
|
// block has advanced.
|
|
|
|
Block* frontBlock_ = frontBlock.load();
|
|
size_t blockTail = frontBlock_->localTail;
|
|
size_t blockFront = frontBlock_->front.load();
|
|
|
|
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
|
|
fence(memory_order_acquire);
|
|
|
|
non_empty_front_block:
|
|
// Front block not empty, dequeue from here
|
|
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
|
result = std::move(*element);
|
|
element->~T();
|
|
|
|
blockFront = (blockFront + 1) & frontBlock_->sizeMask;
|
|
|
|
fence(memory_order_release);
|
|
frontBlock_->front = blockFront;
|
|
}
|
|
else if (frontBlock_ != tailBlock.load()) {
|
|
fence(memory_order_acquire);
|
|
|
|
frontBlock_ = frontBlock.load();
|
|
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
|
blockFront = frontBlock_->front.load();
|
|
fence(memory_order_acquire);
|
|
|
|
if (blockFront != blockTail) {
|
|
// Oh look, the front block isn't empty after all
|
|
goto non_empty_front_block;
|
|
}
|
|
|
|
// Front block is empty but there's another block ahead, advance to it
|
|
Block* nextBlock = frontBlock_->next;
|
|
// Don't need an acquire fence here since next can only ever be set on the tailBlock,
|
|
// and we're not the tailBlock, and we did an acquire earlier after reading tailBlock which
|
|
// ensures next is up-to-date on this CPU in case we recently were at tailBlock.
|
|
|
|
size_t nextBlockFront = nextBlock->front.load();
|
|
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
|
|
fence(memory_order_acquire);
|
|
|
|
// Since the tailBlock is only ever advanced after being written to,
|
|
// we know there's for sure an element to dequeue on it
|
|
assert(nextBlockFront != nextBlockTail);
|
|
AE_UNUSED(nextBlockTail);
|
|
|
|
// We're done with this block, let the producer use it if it needs
|
|
fence(memory_order_release); // Expose possibly pending changes to frontBlock->front from last dequeue
|
|
frontBlock = frontBlock_ = nextBlock;
|
|
|
|
compiler_fence(memory_order_release); // Not strictly needed
|
|
|
|
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T));
|
|
|
|
result = std::move(*element);
|
|
element->~T();
|
|
|
|
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
|
|
|
|
fence(memory_order_release);
|
|
frontBlock_->front = nextBlockFront;
|
|
}
|
|
else {
|
|
// No elements in current block and no other block to advance to
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Returns a pointer to the front element in the queue (the one that
|
|
// would be removed next by a call to `try_dequeue` or `pop`). If the
|
|
// queue appears empty at the time the method is called, nullptr is
|
|
// returned instead.
|
|
// Must be called only from the consumer thread.
|
|
T* peek() const AE_NO_TSAN
|
|
{
|
|
#ifndef NDEBUG
|
|
ReentrantGuard guard(this->dequeuing);
|
|
#endif
|
|
// See try_dequeue() for reasoning
|
|
|
|
Block* frontBlock_ = frontBlock.load();
|
|
size_t blockTail = frontBlock_->localTail;
|
|
size_t blockFront = frontBlock_->front.load();
|
|
|
|
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
|
|
fence(memory_order_acquire);
|
|
non_empty_front_block:
|
|
return reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
|
}
|
|
else if (frontBlock_ != tailBlock.load()) {
|
|
fence(memory_order_acquire);
|
|
frontBlock_ = frontBlock.load();
|
|
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
|
blockFront = frontBlock_->front.load();
|
|
fence(memory_order_acquire);
|
|
|
|
if (blockFront != blockTail) {
|
|
goto non_empty_front_block;
|
|
}
|
|
|
|
Block* nextBlock = frontBlock_->next;
|
|
|
|
size_t nextBlockFront = nextBlock->front.load();
|
|
fence(memory_order_acquire);
|
|
|
|
assert(nextBlockFront != nextBlock->tail.load());
|
|
return reinterpret_cast<T*>(nextBlock->data + nextBlockFront * sizeof(T));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Removes the front element from the queue, if any, without returning it.
|
|
// Returns true on success, or false if the queue appeared empty at the time
|
|
// `pop` was called.
|
|
bool pop() AE_NO_TSAN
|
|
{
|
|
#ifndef NDEBUG
|
|
ReentrantGuard guard(this->dequeuing);
|
|
#endif
|
|
// See try_dequeue() for reasoning
|
|
|
|
Block* frontBlock_ = frontBlock.load();
|
|
size_t blockTail = frontBlock_->localTail;
|
|
size_t blockFront = frontBlock_->front.load();
|
|
|
|
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
|
|
fence(memory_order_acquire);
|
|
|
|
non_empty_front_block:
|
|
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
|
element->~T();
|
|
|
|
blockFront = (blockFront + 1) & frontBlock_->sizeMask;
|
|
|
|
fence(memory_order_release);
|
|
frontBlock_->front = blockFront;
|
|
}
|
|
else if (frontBlock_ != tailBlock.load()) {
|
|
fence(memory_order_acquire);
|
|
frontBlock_ = frontBlock.load();
|
|
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
|
blockFront = frontBlock_->front.load();
|
|
fence(memory_order_acquire);
|
|
|
|
if (blockFront != blockTail) {
|
|
goto non_empty_front_block;
|
|
}
|
|
|
|
// Front block is empty but there's another block ahead, advance to it
|
|
Block* nextBlock = frontBlock_->next;
|
|
|
|
size_t nextBlockFront = nextBlock->front.load();
|
|
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
|
|
fence(memory_order_acquire);
|
|
|
|
assert(nextBlockFront != nextBlockTail);
|
|
AE_UNUSED(nextBlockTail);
|
|
|
|
fence(memory_order_release);
|
|
frontBlock = frontBlock_ = nextBlock;
|
|
|
|
compiler_fence(memory_order_release);
|
|
|
|
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T));
|
|
element->~T();
|
|
|
|
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
|
|
|
|
fence(memory_order_release);
|
|
frontBlock_->front = nextBlockFront;
|
|
}
|
|
else {
|
|
// No elements in current block and no other block to advance to
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns the approximate number of items currently in the queue.
|
|
// Safe to call from both the producer and consumer threads.
|
|
inline size_t size_approx() const AE_NO_TSAN
|
|
{
|
|
size_t result = 0;
|
|
Block* frontBlock_ = frontBlock.load();
|
|
Block* block = frontBlock_;
|
|
do {
|
|
fence(memory_order_acquire);
|
|
size_t blockFront = block->front.load();
|
|
size_t blockTail = block->tail.load();
|
|
result += (blockTail - blockFront) & block->sizeMask;
|
|
block = block->next.load();
|
|
} while (block != frontBlock_);
|
|
return result;
|
|
}
|
|
|
|
// Returns the total number of items that could be enqueued without incurring
|
|
// an allocation when this queue is empty.
|
|
// Safe to call from both the producer and consumer threads.
|
|
//
|
|
// NOTE: The actual capacity during usage may be different depending on the consumer.
|
|
// If the consumer is removing elements concurrently, the producer cannot add to
|
|
// the block the consumer is removing from until it's completely empty, except in
|
|
// the case where the producer was writing to the same block the consumer was
|
|
// reading from the whole time.
|
|
inline size_t max_capacity() const {
|
|
size_t result = 0;
|
|
Block* frontBlock_ = frontBlock.load();
|
|
Block* block = frontBlock_;
|
|
do {
|
|
fence(memory_order_acquire);
|
|
result += block->sizeMask;
|
|
block = block->next.load();
|
|
} while (block != frontBlock_);
|
|
return result;
|
|
}
|
|
|
|
|
|
private:
|
|
enum AllocationMode { CanAlloc, CannotAlloc };
|
|
|
|
#if MOODYCAMEL_HAS_EMPLACE
|
|
template<AllocationMode canAlloc, typename... Args>
|
|
bool inner_enqueue(Args&&... args) AE_NO_TSAN
|
|
#else
|
|
template<AllocationMode canAlloc, typename U>
|
|
bool inner_enqueue(U&& element) AE_NO_TSAN
|
|
#endif
|
|
{
|
|
#ifndef NDEBUG
|
|
ReentrantGuard guard(this->enqueuing);
|
|
#endif
|
|
|
|
// High-level pseudocode (assuming we're allowed to alloc a new block):
|
|
// If room in tail block, add to tail
|
|
// Else check next block
|
|
// If next block is not the head block, enqueue on next block
|
|
// Else create a new block and enqueue there
|
|
// Advance tail to the block we just enqueued to
|
|
|
|
Block* tailBlock_ = tailBlock.load();
|
|
size_t blockFront = tailBlock_->localFront;
|
|
size_t blockTail = tailBlock_->tail.load();
|
|
|
|
size_t nextBlockTail = (blockTail + 1) & tailBlock_->sizeMask;
|
|
if (nextBlockTail != blockFront || nextBlockTail != (tailBlock_->localFront = tailBlock_->front.load())) {
|
|
fence(memory_order_acquire);
|
|
// This block has room for at least one more element
|
|
char* location = tailBlock_->data + blockTail * sizeof(T);
|
|
#if MOODYCAMEL_HAS_EMPLACE
|
|
new (location) T(std::forward<Args>(args)...);
|
|
#else
|
|
new (location) T(std::forward<U>(element));
|
|
#endif
|
|
|
|
fence(memory_order_release);
|
|
tailBlock_->tail = nextBlockTail;
|
|
}
|
|
else {
|
|
fence(memory_order_acquire);
|
|
if (tailBlock_->next.load() != frontBlock) {
|
|
// Note that the reason we can't advance to the frontBlock and start adding new entries there
|
|
// is because if we did, then dequeue would stay in that block, eventually reading the new values,
|
|
// instead of advancing to the next full block (whose values were enqueued first and so should be
|
|
// consumed first).
|
|
|
|
fence(memory_order_acquire); // Ensure we get latest writes if we got the latest frontBlock
|
|
|
|
// tailBlock is full, but there's a free block ahead, use it
|
|
Block* tailBlockNext = tailBlock_->next.load();
|
|
size_t nextBlockFront = tailBlockNext->localFront = tailBlockNext->front.load();
|
|
nextBlockTail = tailBlockNext->tail.load();
|
|
fence(memory_order_acquire);
|
|
|
|
// This block must be empty since it's not the head block and we
|
|
// go through the blocks in a circle
|
|
assert(nextBlockFront == nextBlockTail);
|
|
tailBlockNext->localFront = nextBlockFront;
|
|
|
|
char* location = tailBlockNext->data + nextBlockTail * sizeof(T);
|
|
#if MOODYCAMEL_HAS_EMPLACE
|
|
new (location) T(std::forward<Args>(args)...);
|
|
#else
|
|
new (location) T(std::forward<U>(element));
|
|
#endif
|
|
|
|
tailBlockNext->tail = (nextBlockTail + 1) & tailBlockNext->sizeMask;
|
|
|
|
fence(memory_order_release);
|
|
tailBlock = tailBlockNext;
|
|
}
|
|
else if (canAlloc == CanAlloc) {
|
|
// tailBlock is full and there's no free block ahead; create a new block
|
|
auto newBlockSize = largestBlockSize >= MAX_BLOCK_SIZE ? largestBlockSize : largestBlockSize * 2;
|
|
auto newBlock = make_block(newBlockSize);
|
|
if (newBlock == nullptr) {
|
|
// Could not allocate a block!
|
|
return false;
|
|
}
|
|
largestBlockSize = newBlockSize;
|
|
|
|
#if MOODYCAMEL_HAS_EMPLACE
|
|
new (newBlock->data) T(std::forward<Args>(args)...);
|
|
#else
|
|
new (newBlock->data) T(std::forward<U>(element));
|
|
#endif
|
|
assert(newBlock->front == 0);
|
|
newBlock->tail = newBlock->localTail = 1;
|
|
|
|
newBlock->next = tailBlock_->next.load();
|
|
tailBlock_->next = newBlock;
|
|
|
|
// Might be possible for the dequeue thread to see the new tailBlock->next
|
|
// *without* seeing the new tailBlock value, but this is OK since it can't
|
|
// advance to the next block until tailBlock is set anyway (because the only
|
|
// case where it could try to read the next is if it's already at the tailBlock,
|
|
// and it won't advance past tailBlock in any circumstance).
|
|
|
|
fence(memory_order_release);
|
|
tailBlock = newBlock;
|
|
}
|
|
else if (canAlloc == CannotAlloc) {
|
|
// Would have had to allocate a new block to enqueue, but not allowed
|
|
return false;
|
|
}
|
|
else {
|
|
assert(false && "Should be unreachable code");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Disable copying
|
|
ReaderWriterQueue(ReaderWriterQueue const&) { }
|
|
|
|
// Disable assignment
|
|
ReaderWriterQueue& operator=(ReaderWriterQueue const&) { }
|
|
|
|
|
|
AE_FORCEINLINE static size_t ceilToPow2(size_t x)
|
|
{
|
|
// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
|
|
--x;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
for (size_t i = 1; i < sizeof(size_t); i <<= 1) {
|
|
x |= x >> (i << 3);
|
|
}
|
|
++x;
|
|
return x;
|
|
}
|
|
|
|
template<typename U>
|
|
static AE_FORCEINLINE char* align_for(char* ptr) AE_NO_TSAN
|
|
{
|
|
const std::size_t alignment = std::alignment_of<U>::value;
|
|
return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment;
|
|
}
|
|
private:
|
|
#ifndef NDEBUG
|
|
struct ReentrantGuard
|
|
{
|
|
AE_NO_TSAN ReentrantGuard(weak_atomic<bool>& _inSection)
|
|
: inSection(_inSection)
|
|
{
|
|
assert(!inSection && "Concurrent (or re-entrant) enqueue or dequeue operation detected (only one thread at a time may hold the producer or consumer role)");
|
|
inSection = true;
|
|
}
|
|
|
|
AE_NO_TSAN ~ReentrantGuard() { inSection = false; }
|
|
|
|
private:
|
|
ReentrantGuard& operator=(ReentrantGuard const&);
|
|
|
|
private:
|
|
weak_atomic<bool>& inSection;
|
|
};
|
|
#endif
|
|
|
|
struct Block
|
|
{
|
|
// Avoid false-sharing by putting highly contended variables on their own cache lines
|
|
weak_atomic<size_t> front; // (Atomic) Elements are read from here
|
|
size_t localTail; // An uncontended shadow copy of tail, owned by the consumer
|
|
|
|
char cachelineFiller0[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) - sizeof(size_t)];
|
|
weak_atomic<size_t> tail; // (Atomic) Elements are enqueued here
|
|
size_t localFront;
|
|
|
|
char cachelineFiller1[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) - sizeof(size_t)]; // next isn't very contended, but we don't want it on the same cache line as tail (which is)
|
|
weak_atomic<Block*> next; // (Atomic)
|
|
|
|
char* data; // Contents (on heap) are aligned to T's alignment
|
|
|
|
const size_t sizeMask;
|
|
|
|
|
|
// size must be a power of two (and greater than 0)
|
|
AE_NO_TSAN Block(size_t const& _size, char* _rawThis, char* _data)
|
|
: front(0UL), localTail(0), tail(0UL), localFront(0), next(nullptr), data(_data), sizeMask(_size - 1), rawThis(_rawThis)
|
|
{
|
|
}
|
|
|
|
private:
|
|
// C4512 - Assignment operator could not be generated
|
|
Block& operator=(Block const&);
|
|
|
|
public:
|
|
char* rawThis;
|
|
};
|
|
|
|
|
|
static Block* make_block(size_t capacity) AE_NO_TSAN
|
|
{
|
|
// Allocate enough memory for the block itself, as well as all the elements it will contain
|
|
auto size = sizeof(Block) + std::alignment_of<Block>::value - 1;
|
|
size += sizeof(T) * capacity + std::alignment_of<T>::value - 1;
|
|
auto newBlockRaw = static_cast<char*>(std::malloc(size));
|
|
if (newBlockRaw == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto newBlockAligned = align_for<Block>(newBlockRaw);
|
|
auto newBlockData = align_for<T>(newBlockAligned + sizeof(Block));
|
|
return new (newBlockAligned) Block(capacity, newBlockRaw, newBlockData);
|
|
}
|
|
|
|
private:
|
|
weak_atomic<Block*> frontBlock; // (Atomic) Elements are dequeued from this block
|
|
|
|
char cachelineFiller[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<Block*>)];
|
|
weak_atomic<Block*> tailBlock; // (Atomic) Elements are enqueued to this block
|
|
|
|
size_t largestBlockSize;
|
|
|
|
#ifndef NDEBUG
|
|
weak_atomic<bool> enqueuing;
|
|
mutable weak_atomic<bool> dequeuing;
|
|
#endif
|
|
};
|
|
|
|
} // end namespace moodycamel
|
|
|
|
#ifdef AE_VCPP
|
|
#pragma warning(pop)
|
|
#endif
|