mirror of
https://github.com/wolfpld/tracy.git
synced 2024-11-10 02:31:48 +00:00
1262 lines
42 KiB
C
1262 lines
42 KiB
C
/*
|
|
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under both the BSD-style license (found in the
|
|
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
|
* in the COPYING file in the root directory of this source tree).
|
|
* You may select, at your option, one of the above-listed licenses.
|
|
*/
|
|
|
|
/* *****************************************************************************
|
|
* Constructs a dictionary using a heuristic based on the following paper:
|
|
*
|
|
* Liao, Petri, Moffat, Wirth
|
|
* Effective Construction of Relative Lempel-Ziv Dictionaries
|
|
* Published in WWW 2016.
|
|
*
|
|
* Adapted from code originally written by @ot (Giuseppe Ottaviano).
|
|
******************************************************************************/
|
|
|
|
/*-*************************************
|
|
* Dependencies
|
|
***************************************/
|
|
#include <stdio.h> /* fprintf */
|
|
#include <stdlib.h> /* malloc, free, qsort */
|
|
#include <string.h> /* memset */
|
|
#include <time.h> /* clock */
|
|
|
|
#ifndef ZDICT_STATIC_LINKING_ONLY
|
|
# define ZDICT_STATIC_LINKING_ONLY
|
|
#endif
|
|
|
|
#include "../common/mem.h" /* read */
|
|
#include "../common/pool.h" /* POOL_ctx */
|
|
#include "../common/threading.h" /* ZSTD_pthread_mutex_t */
|
|
#include "../common/zstd_internal.h" /* includes zstd.h */
|
|
#include "../common/bits.h" /* ZSTD_highbit32 */
|
|
#include "../zdict.h"
|
|
#include "cover.h"
|
|
|
|
/*-*************************************
|
|
* Constants
|
|
***************************************/
|
|
/**
|
|
* There are 32bit indexes used to ref samples, so limit samples size to 4GB
|
|
* on 64bit builds.
|
|
* For 32bit builds we choose 1 GB.
|
|
* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
|
|
* contiguous buffer, so 1GB is already a high limit.
|
|
*/
|
|
#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
|
|
#define COVER_DEFAULT_SPLITPOINT 1.0
|
|
|
|
/*-*************************************
|
|
* Console display
|
|
***************************************/
|
|
#ifndef LOCALDISPLAYLEVEL
|
|
static int g_displayLevel = 0;
|
|
#endif
|
|
#undef DISPLAY
|
|
#define DISPLAY(...) \
|
|
{ \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
fflush(stderr); \
|
|
}
|
|
#undef LOCALDISPLAYLEVEL
|
|
#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
|
|
if (displayLevel >= l) { \
|
|
DISPLAY(__VA_ARGS__); \
|
|
} /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
|
|
#undef DISPLAYLEVEL
|
|
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
|
|
|
|
#ifndef LOCALDISPLAYUPDATE
|
|
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
|
|
static clock_t g_time = 0;
|
|
#endif
|
|
#undef LOCALDISPLAYUPDATE
|
|
#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
|
|
if (displayLevel >= l) { \
|
|
if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
|
|
g_time = clock(); \
|
|
DISPLAY(__VA_ARGS__); \
|
|
} \
|
|
}
|
|
#undef DISPLAYUPDATE
|
|
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
|
|
|
|
/*-*************************************
|
|
* Hash table
|
|
***************************************
|
|
* A small specialized hash map for storing activeDmers.
|
|
* The map does not resize, so if it becomes full it will loop forever.
|
|
* Thus, the map must be large enough to store every value.
|
|
* The map implements linear probing and keeps its load less than 0.5.
|
|
*/
|
|
|
|
#define MAP_EMPTY_VALUE ((U32)-1)
|
|
typedef struct COVER_map_pair_t_s {
|
|
U32 key;
|
|
U32 value;
|
|
} COVER_map_pair_t;
|
|
|
|
typedef struct COVER_map_s {
|
|
COVER_map_pair_t *data;
|
|
U32 sizeLog;
|
|
U32 size;
|
|
U32 sizeMask;
|
|
} COVER_map_t;
|
|
|
|
/**
|
|
* Clear the map.
|
|
*/
|
|
static void COVER_map_clear(COVER_map_t *map) {
|
|
memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
|
|
}
|
|
|
|
/**
|
|
* Initializes a map of the given size.
|
|
* Returns 1 on success and 0 on failure.
|
|
* The map must be destroyed with COVER_map_destroy().
|
|
* The map is only guaranteed to be large enough to hold size elements.
|
|
*/
|
|
static int COVER_map_init(COVER_map_t *map, U32 size) {
|
|
map->sizeLog = ZSTD_highbit32(size) + 2;
|
|
map->size = (U32)1 << map->sizeLog;
|
|
map->sizeMask = map->size - 1;
|
|
map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
|
|
if (!map->data) {
|
|
map->sizeLog = 0;
|
|
map->size = 0;
|
|
return 0;
|
|
}
|
|
COVER_map_clear(map);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Internal hash function
|
|
*/
|
|
static const U32 COVER_prime4bytes = 2654435761U;
|
|
static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
|
|
return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
|
|
}
|
|
|
|
/**
|
|
* Helper function that returns the index that a key should be placed into.
|
|
*/
|
|
static U32 COVER_map_index(COVER_map_t *map, U32 key) {
|
|
const U32 hash = COVER_map_hash(map, key);
|
|
U32 i;
|
|
for (i = hash;; i = (i + 1) & map->sizeMask) {
|
|
COVER_map_pair_t *pos = &map->data[i];
|
|
if (pos->value == MAP_EMPTY_VALUE) {
|
|
return i;
|
|
}
|
|
if (pos->key == key) {
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the pointer to the value for key.
|
|
* If key is not in the map, it is inserted and the value is set to 0.
|
|
* The map must not be full.
|
|
*/
|
|
static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
|
|
COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
|
|
if (pos->value == MAP_EMPTY_VALUE) {
|
|
pos->key = key;
|
|
pos->value = 0;
|
|
}
|
|
return &pos->value;
|
|
}
|
|
|
|
/**
|
|
* Deletes key from the map if present.
|
|
*/
|
|
static void COVER_map_remove(COVER_map_t *map, U32 key) {
|
|
U32 i = COVER_map_index(map, key);
|
|
COVER_map_pair_t *del = &map->data[i];
|
|
U32 shift = 1;
|
|
if (del->value == MAP_EMPTY_VALUE) {
|
|
return;
|
|
}
|
|
for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
|
|
COVER_map_pair_t *const pos = &map->data[i];
|
|
/* If the position is empty we are done */
|
|
if (pos->value == MAP_EMPTY_VALUE) {
|
|
del->value = MAP_EMPTY_VALUE;
|
|
return;
|
|
}
|
|
/* If pos can be moved to del do so */
|
|
if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
|
|
del->key = pos->key;
|
|
del->value = pos->value;
|
|
del = pos;
|
|
shift = 1;
|
|
} else {
|
|
++shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Destroys a map that is inited with COVER_map_init().
|
|
*/
|
|
static void COVER_map_destroy(COVER_map_t *map) {
|
|
if (map->data) {
|
|
free(map->data);
|
|
}
|
|
map->data = NULL;
|
|
map->size = 0;
|
|
}
|
|
|
|
/*-*************************************
|
|
* Context
|
|
***************************************/
|
|
|
|
typedef struct {
|
|
const BYTE *samples;
|
|
size_t *offsets;
|
|
const size_t *samplesSizes;
|
|
size_t nbSamples;
|
|
size_t nbTrainSamples;
|
|
size_t nbTestSamples;
|
|
U32 *suffix;
|
|
size_t suffixSize;
|
|
U32 *freqs;
|
|
U32 *dmerAt;
|
|
unsigned d;
|
|
} COVER_ctx_t;
|
|
|
|
/* We need a global context for qsort... */
|
|
static COVER_ctx_t *g_coverCtx = NULL;
|
|
|
|
/*-*************************************
|
|
* Helper functions
|
|
***************************************/
|
|
|
|
/**
|
|
* Returns the sum of the sample sizes.
|
|
*/
|
|
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
|
|
size_t sum = 0;
|
|
unsigned i;
|
|
for (i = 0; i < nbSamples; ++i) {
|
|
sum += samplesSizes[i];
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
/**
|
|
* Returns -1 if the dmer at lp is less than the dmer at rp.
|
|
* Return 0 if the dmers at lp and rp are equal.
|
|
* Returns 1 if the dmer at lp is greater than the dmer at rp.
|
|
*/
|
|
static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
|
|
U32 const lhs = *(U32 const *)lp;
|
|
U32 const rhs = *(U32 const *)rp;
|
|
return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
|
|
}
|
|
/**
|
|
* Faster version for d <= 8.
|
|
*/
|
|
static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
|
|
U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
|
|
U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
|
|
U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
|
|
if (lhs < rhs) {
|
|
return -1;
|
|
}
|
|
return (lhs > rhs);
|
|
}
|
|
|
|
/**
|
|
* Same as COVER_cmp() except ties are broken by pointer value
|
|
* NOTE: g_coverCtx must be set to call this function. A global is required because
|
|
* qsort doesn't take an opaque pointer.
|
|
*/
|
|
static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
|
|
int result = COVER_cmp(g_coverCtx, lp, rp);
|
|
if (result == 0) {
|
|
result = lp < rp ? -1 : 1;
|
|
}
|
|
return result;
|
|
}
|
|
/**
|
|
* Faster version for d <= 8.
|
|
*/
|
|
static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
|
|
int result = COVER_cmp8(g_coverCtx, lp, rp);
|
|
if (result == 0) {
|
|
result = lp < rp ? -1 : 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns the first pointer in [first, last) whose element does not compare
|
|
* less than value. If no such element exists it returns last.
|
|
*/
|
|
static const size_t *COVER_lower_bound(const size_t* first, const size_t* last,
|
|
size_t value) {
|
|
size_t count = (size_t)(last - first);
|
|
assert(last >= first);
|
|
while (count != 0) {
|
|
size_t step = count / 2;
|
|
const size_t *ptr = first;
|
|
ptr += step;
|
|
if (*ptr < value) {
|
|
first = ++ptr;
|
|
count -= step + 1;
|
|
} else {
|
|
count = step;
|
|
}
|
|
}
|
|
return first;
|
|
}
|
|
|
|
/**
|
|
* Generic groupBy function.
|
|
* Groups an array sorted by cmp into groups with equivalent values.
|
|
* Calls grp for each group.
|
|
*/
|
|
static void
|
|
COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
|
|
int (*cmp)(COVER_ctx_t *, const void *, const void *),
|
|
void (*grp)(COVER_ctx_t *, const void *, const void *)) {
|
|
const BYTE *ptr = (const BYTE *)data;
|
|
size_t num = 0;
|
|
while (num < count) {
|
|
const BYTE *grpEnd = ptr + size;
|
|
++num;
|
|
while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
|
|
grpEnd += size;
|
|
++num;
|
|
}
|
|
grp(ctx, ptr, grpEnd);
|
|
ptr = grpEnd;
|
|
}
|
|
}
|
|
|
|
/*-*************************************
|
|
* Cover functions
|
|
***************************************/
|
|
|
|
/**
|
|
* Called on each group of positions with the same dmer.
|
|
* Counts the frequency of each dmer and saves it in the suffix array.
|
|
* Fills `ctx->dmerAt`.
|
|
*/
|
|
static void COVER_group(COVER_ctx_t *ctx, const void *group,
|
|
const void *groupEnd) {
|
|
/* The group consists of all the positions with the same first d bytes. */
|
|
const U32 *grpPtr = (const U32 *)group;
|
|
const U32 *grpEnd = (const U32 *)groupEnd;
|
|
/* The dmerId is how we will reference this dmer.
|
|
* This allows us to map the whole dmer space to a much smaller space, the
|
|
* size of the suffix array.
|
|
*/
|
|
const U32 dmerId = (U32)(grpPtr - ctx->suffix);
|
|
/* Count the number of samples this dmer shows up in */
|
|
U32 freq = 0;
|
|
/* Details */
|
|
const size_t *curOffsetPtr = ctx->offsets;
|
|
const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
|
|
/* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
|
|
* different sample than the last.
|
|
*/
|
|
size_t curSampleEnd = ctx->offsets[0];
|
|
for (; grpPtr != grpEnd; ++grpPtr) {
|
|
/* Save the dmerId for this position so we can get back to it. */
|
|
ctx->dmerAt[*grpPtr] = dmerId;
|
|
/* Dictionaries only help for the first reference to the dmer.
|
|
* After that zstd can reference the match from the previous reference.
|
|
* So only count each dmer once for each sample it is in.
|
|
*/
|
|
if (*grpPtr < curSampleEnd) {
|
|
continue;
|
|
}
|
|
freq += 1;
|
|
/* Binary search to find the end of the sample *grpPtr is in.
|
|
* In the common case that grpPtr + 1 == grpEnd we can skip the binary
|
|
* search because the loop is over.
|
|
*/
|
|
if (grpPtr + 1 != grpEnd) {
|
|
const size_t *sampleEndPtr =
|
|
COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
|
|
curSampleEnd = *sampleEndPtr;
|
|
curOffsetPtr = sampleEndPtr + 1;
|
|
}
|
|
}
|
|
/* At this point we are never going to look at this segment of the suffix
|
|
* array again. We take advantage of this fact to save memory.
|
|
* We store the frequency of the dmer in the first position of the group,
|
|
* which is dmerId.
|
|
*/
|
|
ctx->suffix[dmerId] = freq;
|
|
}
|
|
|
|
|
|
/**
|
|
* Selects the best segment in an epoch.
|
|
* Segments of are scored according to the function:
|
|
*
|
|
* Let F(d) be the frequency of dmer d.
|
|
* Let S_i be the dmer at position i of segment S which has length k.
|
|
*
|
|
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
|
|
*
|
|
* Once the dmer d is in the dictionary we set F(d) = 0.
|
|
*/
|
|
static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
|
|
COVER_map_t *activeDmers, U32 begin,
|
|
U32 end,
|
|
ZDICT_cover_params_t parameters) {
|
|
/* Constants */
|
|
const U32 k = parameters.k;
|
|
const U32 d = parameters.d;
|
|
const U32 dmersInK = k - d + 1;
|
|
/* Try each segment (activeSegment) and save the best (bestSegment) */
|
|
COVER_segment_t bestSegment = {0, 0, 0};
|
|
COVER_segment_t activeSegment;
|
|
/* Reset the activeDmers in the segment */
|
|
COVER_map_clear(activeDmers);
|
|
/* The activeSegment starts at the beginning of the epoch. */
|
|
activeSegment.begin = begin;
|
|
activeSegment.end = begin;
|
|
activeSegment.score = 0;
|
|
/* Slide the activeSegment through the whole epoch.
|
|
* Save the best segment in bestSegment.
|
|
*/
|
|
while (activeSegment.end < end) {
|
|
/* The dmerId for the dmer at the next position */
|
|
U32 newDmer = ctx->dmerAt[activeSegment.end];
|
|
/* The entry in activeDmers for this dmerId */
|
|
U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
|
|
/* If the dmer isn't already present in the segment add its score. */
|
|
if (*newDmerOcc == 0) {
|
|
/* The paper suggest using the L-0.5 norm, but experiments show that it
|
|
* doesn't help.
|
|
*/
|
|
activeSegment.score += freqs[newDmer];
|
|
}
|
|
/* Add the dmer to the segment */
|
|
activeSegment.end += 1;
|
|
*newDmerOcc += 1;
|
|
|
|
/* If the window is now too large, drop the first position */
|
|
if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
|
|
U32 delDmer = ctx->dmerAt[activeSegment.begin];
|
|
U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
|
|
activeSegment.begin += 1;
|
|
*delDmerOcc -= 1;
|
|
/* If this is the last occurrence of the dmer, subtract its score */
|
|
if (*delDmerOcc == 0) {
|
|
COVER_map_remove(activeDmers, delDmer);
|
|
activeSegment.score -= freqs[delDmer];
|
|
}
|
|
}
|
|
|
|
/* If this segment is the best so far save it */
|
|
if (activeSegment.score > bestSegment.score) {
|
|
bestSegment = activeSegment;
|
|
}
|
|
}
|
|
{
|
|
/* Trim off the zero frequency head and tail from the segment. */
|
|
U32 newBegin = bestSegment.end;
|
|
U32 newEnd = bestSegment.begin;
|
|
U32 pos;
|
|
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
|
|
U32 freq = freqs[ctx->dmerAt[pos]];
|
|
if (freq != 0) {
|
|
newBegin = MIN(newBegin, pos);
|
|
newEnd = pos + 1;
|
|
}
|
|
}
|
|
bestSegment.begin = newBegin;
|
|
bestSegment.end = newEnd;
|
|
}
|
|
{
|
|
/* Zero out the frequency of each dmer covered by the chosen segment. */
|
|
U32 pos;
|
|
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
|
|
freqs[ctx->dmerAt[pos]] = 0;
|
|
}
|
|
}
|
|
return bestSegment;
|
|
}
|
|
|
|
/**
|
|
* Check the validity of the parameters.
|
|
* Returns non-zero if the parameters are valid and 0 otherwise.
|
|
*/
|
|
static int COVER_checkParameters(ZDICT_cover_params_t parameters,
|
|
size_t maxDictSize) {
|
|
/* k and d are required parameters */
|
|
if (parameters.d == 0 || parameters.k == 0) {
|
|
return 0;
|
|
}
|
|
/* k <= maxDictSize */
|
|
if (parameters.k > maxDictSize) {
|
|
return 0;
|
|
}
|
|
/* d <= k */
|
|
if (parameters.d > parameters.k) {
|
|
return 0;
|
|
}
|
|
/* 0 < splitPoint <= 1 */
|
|
if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Clean up a context initialized with `COVER_ctx_init()`.
|
|
*/
|
|
static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
|
|
if (!ctx) {
|
|
return;
|
|
}
|
|
if (ctx->suffix) {
|
|
free(ctx->suffix);
|
|
ctx->suffix = NULL;
|
|
}
|
|
if (ctx->freqs) {
|
|
free(ctx->freqs);
|
|
ctx->freqs = NULL;
|
|
}
|
|
if (ctx->dmerAt) {
|
|
free(ctx->dmerAt);
|
|
ctx->dmerAt = NULL;
|
|
}
|
|
if (ctx->offsets) {
|
|
free(ctx->offsets);
|
|
ctx->offsets = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Prepare a context for dictionary building.
|
|
* The context is only dependent on the parameter `d` and can be used multiple
|
|
* times.
|
|
* Returns 0 on success or error code on error.
|
|
* The context must be destroyed with `COVER_ctx_destroy()`.
|
|
*/
|
|
static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
|
|
const size_t *samplesSizes, unsigned nbSamples,
|
|
unsigned d, double splitPoint)
|
|
{
|
|
const BYTE *const samples = (const BYTE *)samplesBuffer;
|
|
const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
|
|
/* Split samples into testing and training sets */
|
|
const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
|
|
const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
|
|
const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
|
|
const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
|
|
/* Checks */
|
|
if (totalSamplesSize < MAX(d, sizeof(U64)) ||
|
|
totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
|
|
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
|
|
(unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
|
|
return ERROR(srcSize_wrong);
|
|
}
|
|
/* Check if there are at least 5 training samples */
|
|
if (nbTrainSamples < 5) {
|
|
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
|
|
return ERROR(srcSize_wrong);
|
|
}
|
|
/* Check if there's testing sample */
|
|
if (nbTestSamples < 1) {
|
|
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
|
|
return ERROR(srcSize_wrong);
|
|
}
|
|
/* Zero the context */
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
|
|
(unsigned)trainingSamplesSize);
|
|
DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
|
|
(unsigned)testSamplesSize);
|
|
ctx->samples = samples;
|
|
ctx->samplesSizes = samplesSizes;
|
|
ctx->nbSamples = nbSamples;
|
|
ctx->nbTrainSamples = nbTrainSamples;
|
|
ctx->nbTestSamples = nbTestSamples;
|
|
/* Partial suffix array */
|
|
ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
|
|
ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
|
|
/* Maps index to the dmerID */
|
|
ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
|
|
/* The offsets of each file */
|
|
ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
|
|
if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
|
|
DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
|
|
COVER_ctx_destroy(ctx);
|
|
return ERROR(memory_allocation);
|
|
}
|
|
ctx->freqs = NULL;
|
|
ctx->d = d;
|
|
|
|
/* Fill offsets from the samplesSizes */
|
|
{
|
|
U32 i;
|
|
ctx->offsets[0] = 0;
|
|
for (i = 1; i <= nbSamples; ++i) {
|
|
ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
|
|
}
|
|
}
|
|
DISPLAYLEVEL(2, "Constructing partial suffix array\n");
|
|
{
|
|
/* suffix is a partial suffix array.
|
|
* It only sorts suffixes by their first parameters.d bytes.
|
|
* The sort is stable, so each dmer group is sorted by position in input.
|
|
*/
|
|
U32 i;
|
|
for (i = 0; i < ctx->suffixSize; ++i) {
|
|
ctx->suffix[i] = i;
|
|
}
|
|
/* qsort doesn't take an opaque pointer, so pass as a global.
|
|
* On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
|
|
*/
|
|
g_coverCtx = ctx;
|
|
#if defined(__OpenBSD__)
|
|
mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
|
|
(ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
|
|
#else
|
|
qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
|
|
(ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
|
|
#endif
|
|
}
|
|
DISPLAYLEVEL(2, "Computing frequencies\n");
|
|
/* For each dmer group (group of positions with the same first d bytes):
|
|
* 1. For each position we set dmerAt[position] = dmerID. The dmerID is
|
|
* (groupBeginPtr - suffix). This allows us to go from position to
|
|
* dmerID so we can look up values in freq.
|
|
* 2. We calculate how many samples the dmer occurs in and save it in
|
|
* freqs[dmerId].
|
|
*/
|
|
COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
|
|
(ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
|
|
ctx->freqs = ctx->suffix;
|
|
ctx->suffix = NULL;
|
|
return 0;
|
|
}
|
|
|
|
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
|
|
{
|
|
const double ratio = (double)nbDmers / (double)maxDictSize;
|
|
if (ratio >= 10) {
|
|
return;
|
|
}
|
|
LOCALDISPLAYLEVEL(displayLevel, 1,
|
|
"WARNING: The maximum dictionary size %u is too large "
|
|
"compared to the source size %u! "
|
|
"size(source)/size(dictionary) = %f, but it should be >= "
|
|
"10! This may lead to a subpar dictionary! We recommend "
|
|
"training on sources at least 10x, and preferably 100x "
|
|
"the size of the dictionary! \n", (U32)maxDictSize,
|
|
(U32)nbDmers, ratio);
|
|
}
|
|
|
|
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
|
|
U32 nbDmers, U32 k, U32 passes)
|
|
{
|
|
const U32 minEpochSize = k * 10;
|
|
COVER_epoch_info_t epochs;
|
|
epochs.num = MAX(1, maxDictSize / k / passes);
|
|
epochs.size = nbDmers / epochs.num;
|
|
if (epochs.size >= minEpochSize) {
|
|
assert(epochs.size * epochs.num <= nbDmers);
|
|
return epochs;
|
|
}
|
|
epochs.size = MIN(minEpochSize, nbDmers);
|
|
epochs.num = nbDmers / epochs.size;
|
|
assert(epochs.size * epochs.num <= nbDmers);
|
|
return epochs;
|
|
}
|
|
|
|
/**
|
|
* Given the prepared context build the dictionary.
|
|
*/
|
|
static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
|
|
COVER_map_t *activeDmers, void *dictBuffer,
|
|
size_t dictBufferCapacity,
|
|
ZDICT_cover_params_t parameters) {
|
|
BYTE *const dict = (BYTE *)dictBuffer;
|
|
size_t tail = dictBufferCapacity;
|
|
/* Divide the data into epochs. We will select one segment from each epoch. */
|
|
const COVER_epoch_info_t epochs = COVER_computeEpochs(
|
|
(U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
|
|
const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
|
|
size_t zeroScoreRun = 0;
|
|
size_t epoch;
|
|
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
|
|
(U32)epochs.num, (U32)epochs.size);
|
|
/* Loop through the epochs until there are no more segments or the dictionary
|
|
* is full.
|
|
*/
|
|
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
|
|
const U32 epochBegin = (U32)(epoch * epochs.size);
|
|
const U32 epochEnd = epochBegin + epochs.size;
|
|
size_t segmentSize;
|
|
/* Select a segment */
|
|
COVER_segment_t segment = COVER_selectSegment(
|
|
ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
|
|
/* If the segment covers no dmers, then we are out of content.
|
|
* There may be new content in other epochs, for continue for some time.
|
|
*/
|
|
if (segment.score == 0) {
|
|
if (++zeroScoreRun >= maxZeroScoreRun) {
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
zeroScoreRun = 0;
|
|
/* Trim the segment if necessary and if it is too small then we are done */
|
|
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
|
|
if (segmentSize < parameters.d) {
|
|
break;
|
|
}
|
|
/* We fill the dictionary from the back to allow the best segments to be
|
|
* referenced with the smallest offsets.
|
|
*/
|
|
tail -= segmentSize;
|
|
memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
|
|
DISPLAYUPDATE(
|
|
2, "\r%u%% ",
|
|
(unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
|
|
}
|
|
DISPLAYLEVEL(2, "\r%79s\r", "");
|
|
return tail;
|
|
}
|
|
|
|
ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_cover(
|
|
void *dictBuffer, size_t dictBufferCapacity,
|
|
const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
|
|
ZDICT_cover_params_t parameters)
|
|
{
|
|
BYTE* const dict = (BYTE*)dictBuffer;
|
|
COVER_ctx_t ctx;
|
|
COVER_map_t activeDmers;
|
|
parameters.splitPoint = 1.0;
|
|
/* Initialize global data */
|
|
g_displayLevel = (int)parameters.zParams.notificationLevel;
|
|
/* Checks */
|
|
if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
|
|
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
|
|
return ERROR(parameter_outOfBound);
|
|
}
|
|
if (nbSamples == 0) {
|
|
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
|
|
return ERROR(srcSize_wrong);
|
|
}
|
|
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
|
|
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
|
|
ZDICT_DICTSIZE_MIN);
|
|
return ERROR(dstSize_tooSmall);
|
|
}
|
|
/* Initialize context and activeDmers */
|
|
{
|
|
size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
|
|
parameters.d, parameters.splitPoint);
|
|
if (ZSTD_isError(initVal)) {
|
|
return initVal;
|
|
}
|
|
}
|
|
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
|
|
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
|
|
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
|
|
COVER_ctx_destroy(&ctx);
|
|
return ERROR(memory_allocation);
|
|
}
|
|
|
|
DISPLAYLEVEL(2, "Building dictionary\n");
|
|
{
|
|
const size_t tail =
|
|
COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
|
|
dictBufferCapacity, parameters);
|
|
const size_t dictionarySize = ZDICT_finalizeDictionary(
|
|
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
|
|
samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
|
|
if (!ZSTD_isError(dictionarySize)) {
|
|
DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
|
|
(unsigned)dictionarySize);
|
|
}
|
|
COVER_ctx_destroy(&ctx);
|
|
COVER_map_destroy(&activeDmers);
|
|
return dictionarySize;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
|
|
const size_t *samplesSizes, const BYTE *samples,
|
|
size_t *offsets,
|
|
size_t nbTrainSamples, size_t nbSamples,
|
|
BYTE *const dict, size_t dictBufferCapacity) {
|
|
size_t totalCompressedSize = ERROR(GENERIC);
|
|
/* Pointers */
|
|
ZSTD_CCtx *cctx;
|
|
ZSTD_CDict *cdict;
|
|
void *dst;
|
|
/* Local variables */
|
|
size_t dstCapacity;
|
|
size_t i;
|
|
/* Allocate dst with enough space to compress the maximum sized sample */
|
|
{
|
|
size_t maxSampleSize = 0;
|
|
i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
|
|
for (; i < nbSamples; ++i) {
|
|
maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
|
|
}
|
|
dstCapacity = ZSTD_compressBound(maxSampleSize);
|
|
dst = malloc(dstCapacity);
|
|
}
|
|
/* Create the cctx and cdict */
|
|
cctx = ZSTD_createCCtx();
|
|
cdict = ZSTD_createCDict(dict, dictBufferCapacity,
|
|
parameters.zParams.compressionLevel);
|
|
if (!dst || !cctx || !cdict) {
|
|
goto _compressCleanup;
|
|
}
|
|
/* Compress each sample and sum their sizes (or error) */
|
|
totalCompressedSize = dictBufferCapacity;
|
|
i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
|
|
for (; i < nbSamples; ++i) {
|
|
const size_t size = ZSTD_compress_usingCDict(
|
|
cctx, dst, dstCapacity, samples + offsets[i],
|
|
samplesSizes[i], cdict);
|
|
if (ZSTD_isError(size)) {
|
|
totalCompressedSize = size;
|
|
goto _compressCleanup;
|
|
}
|
|
totalCompressedSize += size;
|
|
}
|
|
_compressCleanup:
|
|
ZSTD_freeCCtx(cctx);
|
|
ZSTD_freeCDict(cdict);
|
|
if (dst) {
|
|
free(dst);
|
|
}
|
|
return totalCompressedSize;
|
|
}
|
|
|
|
|
|
/**
|
|
* Initialize the `COVER_best_t`.
|
|
*/
|
|
void COVER_best_init(COVER_best_t *best) {
|
|
if (best==NULL) return; /* compatible with init on NULL */
|
|
(void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
|
|
(void)ZSTD_pthread_cond_init(&best->cond, NULL);
|
|
best->liveJobs = 0;
|
|
best->dict = NULL;
|
|
best->dictSize = 0;
|
|
best->compressedSize = (size_t)-1;
|
|
memset(&best->parameters, 0, sizeof(best->parameters));
|
|
}
|
|
|
|
/**
|
|
* Wait until liveJobs == 0.
|
|
*/
|
|
void COVER_best_wait(COVER_best_t *best) {
|
|
if (!best) {
|
|
return;
|
|
}
|
|
ZSTD_pthread_mutex_lock(&best->mutex);
|
|
while (best->liveJobs != 0) {
|
|
ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
|
|
}
|
|
ZSTD_pthread_mutex_unlock(&best->mutex);
|
|
}
|
|
|
|
/**
|
|
* Call COVER_best_wait() and then destroy the COVER_best_t.
|
|
*/
|
|
void COVER_best_destroy(COVER_best_t *best) {
|
|
if (!best) {
|
|
return;
|
|
}
|
|
COVER_best_wait(best);
|
|
if (best->dict) {
|
|
free(best->dict);
|
|
}
|
|
ZSTD_pthread_mutex_destroy(&best->mutex);
|
|
ZSTD_pthread_cond_destroy(&best->cond);
|
|
}
|
|
|
|
/**
|
|
* Called when a thread is about to be launched.
|
|
* Increments liveJobs.
|
|
*/
|
|
void COVER_best_start(COVER_best_t *best) {
|
|
if (!best) {
|
|
return;
|
|
}
|
|
ZSTD_pthread_mutex_lock(&best->mutex);
|
|
++best->liveJobs;
|
|
ZSTD_pthread_mutex_unlock(&best->mutex);
|
|
}
|
|
|
|
/**
|
|
* Called when a thread finishes executing, both on error or success.
|
|
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
|
|
* If this dictionary is the best so far save it and its parameters.
|
|
*/
|
|
void COVER_best_finish(COVER_best_t* best,
|
|
ZDICT_cover_params_t parameters,
|
|
COVER_dictSelection_t selection)
|
|
{
|
|
void* dict = selection.dictContent;
|
|
size_t compressedSize = selection.totalCompressedSize;
|
|
size_t dictSize = selection.dictSize;
|
|
if (!best) {
|
|
return;
|
|
}
|
|
{
|
|
size_t liveJobs;
|
|
ZSTD_pthread_mutex_lock(&best->mutex);
|
|
--best->liveJobs;
|
|
liveJobs = best->liveJobs;
|
|
/* If the new dictionary is better */
|
|
if (compressedSize < best->compressedSize) {
|
|
/* Allocate space if necessary */
|
|
if (!best->dict || best->dictSize < dictSize) {
|
|
if (best->dict) {
|
|
free(best->dict);
|
|
}
|
|
best->dict = malloc(dictSize);
|
|
if (!best->dict) {
|
|
best->compressedSize = ERROR(GENERIC);
|
|
best->dictSize = 0;
|
|
ZSTD_pthread_cond_signal(&best->cond);
|
|
ZSTD_pthread_mutex_unlock(&best->mutex);
|
|
return;
|
|
}
|
|
}
|
|
/* Save the dictionary, parameters, and size */
|
|
if (dict) {
|
|
memcpy(best->dict, dict, dictSize);
|
|
best->dictSize = dictSize;
|
|
best->parameters = parameters;
|
|
best->compressedSize = compressedSize;
|
|
}
|
|
}
|
|
if (liveJobs == 0) {
|
|
ZSTD_pthread_cond_broadcast(&best->cond);
|
|
}
|
|
ZSTD_pthread_mutex_unlock(&best->mutex);
|
|
}
|
|
}
|
|
|
|
static COVER_dictSelection_t setDictSelection(BYTE* buf, size_t s, size_t csz)
|
|
{
|
|
COVER_dictSelection_t ds;
|
|
ds.dictContent = buf;
|
|
ds.dictSize = s;
|
|
ds.totalCompressedSize = csz;
|
|
return ds;
|
|
}
|
|
|
|
COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
|
|
return setDictSelection(NULL, 0, error);
|
|
}
|
|
|
|
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
|
|
return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
|
|
}
|
|
|
|
void COVER_dictSelectionFree(COVER_dictSelection_t selection){
|
|
free(selection.dictContent);
|
|
}
|
|
|
|
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
|
|
size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
|
|
size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
|
|
|
|
size_t largestDict = 0;
|
|
size_t largestCompressed = 0;
|
|
BYTE* customDictContentEnd = customDictContent + dictContentSize;
|
|
|
|
BYTE* largestDictbuffer = (BYTE*)malloc(dictBufferCapacity);
|
|
BYTE* candidateDictBuffer = (BYTE*)malloc(dictBufferCapacity);
|
|
double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
|
|
|
|
if (!largestDictbuffer || !candidateDictBuffer) {
|
|
free(largestDictbuffer);
|
|
free(candidateDictBuffer);
|
|
return COVER_dictSelectionError(dictContentSize);
|
|
}
|
|
|
|
/* Initial dictionary size and compressed size */
|
|
memcpy(largestDictbuffer, customDictContent, dictContentSize);
|
|
dictContentSize = ZDICT_finalizeDictionary(
|
|
largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
|
|
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
|
|
|
|
if (ZDICT_isError(dictContentSize)) {
|
|
free(largestDictbuffer);
|
|
free(candidateDictBuffer);
|
|
return COVER_dictSelectionError(dictContentSize);
|
|
}
|
|
|
|
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
|
|
samplesBuffer, offsets,
|
|
nbCheckSamples, nbSamples,
|
|
largestDictbuffer, dictContentSize);
|
|
|
|
if (ZSTD_isError(totalCompressedSize)) {
|
|
free(largestDictbuffer);
|
|
free(candidateDictBuffer);
|
|
return COVER_dictSelectionError(totalCompressedSize);
|
|
}
|
|
|
|
if (params.shrinkDict == 0) {
|
|
free(candidateDictBuffer);
|
|
return setDictSelection(largestDictbuffer, dictContentSize, totalCompressedSize);
|
|
}
|
|
|
|
largestDict = dictContentSize;
|
|
largestCompressed = totalCompressedSize;
|
|
dictContentSize = ZDICT_DICTSIZE_MIN;
|
|
|
|
/* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
|
|
while (dictContentSize < largestDict) {
|
|
memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
|
|
dictContentSize = ZDICT_finalizeDictionary(
|
|
candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
|
|
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
|
|
|
|
if (ZDICT_isError(dictContentSize)) {
|
|
free(largestDictbuffer);
|
|
free(candidateDictBuffer);
|
|
return COVER_dictSelectionError(dictContentSize);
|
|
|
|
}
|
|
|
|
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
|
|
samplesBuffer, offsets,
|
|
nbCheckSamples, nbSamples,
|
|
candidateDictBuffer, dictContentSize);
|
|
|
|
if (ZSTD_isError(totalCompressedSize)) {
|
|
free(largestDictbuffer);
|
|
free(candidateDictBuffer);
|
|
return COVER_dictSelectionError(totalCompressedSize);
|
|
}
|
|
|
|
if ((double)totalCompressedSize <= (double)largestCompressed * regressionTolerance) {
|
|
free(largestDictbuffer);
|
|
return setDictSelection( candidateDictBuffer, dictContentSize, totalCompressedSize );
|
|
}
|
|
dictContentSize *= 2;
|
|
}
|
|
dictContentSize = largestDict;
|
|
totalCompressedSize = largestCompressed;
|
|
free(candidateDictBuffer);
|
|
return setDictSelection( largestDictbuffer, dictContentSize, totalCompressedSize );
|
|
}
|
|
|
|
/**
|
|
* Parameters for COVER_tryParameters().
|
|
*/
|
|
typedef struct COVER_tryParameters_data_s {
|
|
const COVER_ctx_t *ctx;
|
|
COVER_best_t *best;
|
|
size_t dictBufferCapacity;
|
|
ZDICT_cover_params_t parameters;
|
|
} COVER_tryParameters_data_t;
|
|
|
|
/**
|
|
* Tries a set of parameters and updates the COVER_best_t with the results.
|
|
* This function is thread safe if zstd is compiled with multithreaded support.
|
|
* It takes its parameters as an *OWNING* opaque pointer to support threading.
|
|
*/
|
|
static void COVER_tryParameters(void *opaque)
|
|
{
|
|
/* Save parameters as local variables */
|
|
COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
|
|
const COVER_ctx_t *const ctx = data->ctx;
|
|
const ZDICT_cover_params_t parameters = data->parameters;
|
|
size_t dictBufferCapacity = data->dictBufferCapacity;
|
|
size_t totalCompressedSize = ERROR(GENERIC);
|
|
/* Allocate space for hash table, dict, and freqs */
|
|
COVER_map_t activeDmers;
|
|
BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
|
|
COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
|
|
U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
|
|
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
|
|
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
|
|
goto _cleanup;
|
|
}
|
|
if (!dict || !freqs) {
|
|
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
|
|
goto _cleanup;
|
|
}
|
|
/* Copy the frequencies because we need to modify them */
|
|
memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
|
|
/* Build the dictionary */
|
|
{
|
|
const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
|
|
dictBufferCapacity, parameters);
|
|
selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
|
|
ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
|
|
totalCompressedSize);
|
|
|
|
if (COVER_dictSelectionIsError(selection)) {
|
|
DISPLAYLEVEL(1, "Failed to select dictionary\n");
|
|
goto _cleanup;
|
|
}
|
|
}
|
|
_cleanup:
|
|
free(dict);
|
|
COVER_best_finish(data->best, parameters, selection);
|
|
free(data);
|
|
COVER_map_destroy(&activeDmers);
|
|
COVER_dictSelectionFree(selection);
|
|
free(freqs);
|
|
}
|
|
|
|
ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_cover(
|
|
void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
|
|
const size_t* samplesSizes, unsigned nbSamples,
|
|
ZDICT_cover_params_t* parameters)
|
|
{
|
|
/* constants */
|
|
const unsigned nbThreads = parameters->nbThreads;
|
|
const double splitPoint =
|
|
parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
|
|
const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
|
|
const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
|
|
const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
|
|
const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
|
|
const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
|
|
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
|
|
const unsigned kIterations =
|
|
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
|
|
const unsigned shrinkDict = 0;
|
|
/* Local variables */
|
|
const int displayLevel = parameters->zParams.notificationLevel;
|
|
unsigned iteration = 1;
|
|
unsigned d;
|
|
unsigned k;
|
|
COVER_best_t best;
|
|
POOL_ctx *pool = NULL;
|
|
int warned = 0;
|
|
|
|
/* Checks */
|
|
if (splitPoint <= 0 || splitPoint > 1) {
|
|
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
|
|
return ERROR(parameter_outOfBound);
|
|
}
|
|
if (kMinK < kMaxD || kMaxK < kMinK) {
|
|
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
|
|
return ERROR(parameter_outOfBound);
|
|
}
|
|
if (nbSamples == 0) {
|
|
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
|
|
return ERROR(srcSize_wrong);
|
|
}
|
|
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
|
|
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
|
|
ZDICT_DICTSIZE_MIN);
|
|
return ERROR(dstSize_tooSmall);
|
|
}
|
|
if (nbThreads > 1) {
|
|
pool = POOL_create(nbThreads, 1);
|
|
if (!pool) {
|
|
return ERROR(memory_allocation);
|
|
}
|
|
}
|
|
/* Initialization */
|
|
COVER_best_init(&best);
|
|
/* Turn down global display level to clean up display at level 2 and below */
|
|
g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
|
|
/* Loop through d first because each new value needs a new context */
|
|
LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
|
|
kIterations);
|
|
for (d = kMinD; d <= kMaxD; d += 2) {
|
|
/* Initialize the context for this value of d */
|
|
COVER_ctx_t ctx;
|
|
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
|
|
{
|
|
const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
|
|
if (ZSTD_isError(initVal)) {
|
|
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
|
|
COVER_best_destroy(&best);
|
|
POOL_free(pool);
|
|
return initVal;
|
|
}
|
|
}
|
|
if (!warned) {
|
|
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
|
|
warned = 1;
|
|
}
|
|
/* Loop through k reusing the same context */
|
|
for (k = kMinK; k <= kMaxK; k += kStepSize) {
|
|
/* Prepare the arguments */
|
|
COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
|
|
sizeof(COVER_tryParameters_data_t));
|
|
LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
|
|
if (!data) {
|
|
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
|
|
COVER_best_destroy(&best);
|
|
COVER_ctx_destroy(&ctx);
|
|
POOL_free(pool);
|
|
return ERROR(memory_allocation);
|
|
}
|
|
data->ctx = &ctx;
|
|
data->best = &best;
|
|
data->dictBufferCapacity = dictBufferCapacity;
|
|
data->parameters = *parameters;
|
|
data->parameters.k = k;
|
|
data->parameters.d = d;
|
|
data->parameters.splitPoint = splitPoint;
|
|
data->parameters.steps = kSteps;
|
|
data->parameters.shrinkDict = shrinkDict;
|
|
data->parameters.zParams.notificationLevel = g_displayLevel;
|
|
/* Check the parameters */
|
|
if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
|
|
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
|
|
free(data);
|
|
continue;
|
|
}
|
|
/* Call the function and pass ownership of data to it */
|
|
COVER_best_start(&best);
|
|
if (pool) {
|
|
POOL_add(pool, &COVER_tryParameters, data);
|
|
} else {
|
|
COVER_tryParameters(data);
|
|
}
|
|
/* Print status */
|
|
LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
|
|
(unsigned)((iteration * 100) / kIterations));
|
|
++iteration;
|
|
}
|
|
COVER_best_wait(&best);
|
|
COVER_ctx_destroy(&ctx);
|
|
}
|
|
LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
|
|
/* Fill the output buffer and parameters with output of the best parameters */
|
|
{
|
|
const size_t dictSize = best.dictSize;
|
|
if (ZSTD_isError(best.compressedSize)) {
|
|
const size_t compressedSize = best.compressedSize;
|
|
COVER_best_destroy(&best);
|
|
POOL_free(pool);
|
|
return compressedSize;
|
|
}
|
|
*parameters = best.parameters;
|
|
memcpy(dictBuffer, best.dict, dictSize);
|
|
COVER_best_destroy(&best);
|
|
POOL_free(pool);
|
|
return dictSize;
|
|
}
|
|
}
|