`vk-bootstrap` reduces the complexity of setting up a vulkan application by simplifying the three initial steps; instance creation, Physical device selection, and device creation.
Because creating an instance may fail, the builder returns an 'Result' type. This contains either a valid `vkb::Instance` struct, which includes a `VkInstance` handle, or contains an `vkb::InstanceError`.
This is enough to create a usable `VkInstance` handle but many will want to customize it a bit. To configure instance creation, simply call the member functions on the `vkb::InstanceBuilder` object before `build()` is called.
The most common customization to instance creation is enabling the "Validation Layers", an invaluable tool for any vulkan application developer.
```cpp
instance_builder.request_validation_layers ();
```
The other common customization point is setting up the `Debug Messenger Callback`, the mechanism in which an application can control what and where the "Validation Layers" log its output.
To query the available layers and extensions, get a `SystemInfo` struct from `SystemInfo::get_system_info()`. It contains a `is_layer_available()` and `is_extension_available()` function to check for a layer or extensions before enabling it. It also has booleans for if the validation layers are present and if the VK_EXT_debug_utils extension is available.
The `vkb::Instance` struct is meant to hold all the necessary instance level data to enable proper Physical Device selection. It also is meant for easy destructuring into custom classes if so desired.
```cpp
struct CustomVulkanWrapper {
VkInstance instance;
//...
};
CustomVulkanWrapper custom_vk_class;
custom_vk_class.instance = vkb_instance.instance;
```
When the application is finished with the vulkan, call `vkb::destroy_instance()` to dispose of the instance and associated data.
Presenting images to the screen Vulkan requires creating a surface, encapsulated in a `VkSurfaceKHR` handle. Creating a surface is the responsibility of the windowing system, thus is out of scope for `vk-bootstrap`. However, `vk-bootstrap` does try to make the process as painless as possible by automatically enabling the correct windowing extensions in `VkInstance` creation.
Windowing libraries which support Vulkan usually provide a way of getting the `VkSurfaceKHR` handle for the window. These methods require a valid Vulkan instance, thus must be done after instance creation.
Examples for GLFW and SDL2 are listed below.
```cpp
vkb::Instance vkb_instance; //valid vkb::Instance
VkSurfaceKHR surface = nullptr;
// window is a valid library specific Window handle
Once a Vulkan instance has been created, the next step is to find a suitable GPU for the application to use. `vk-bootstrap` provide the `vkb::PhysicalDeviceSelector` class to streamline this process.
Creating a `vkb::PhysicalDeviceSelector` requires a valid `vkb::Instance` to construct.
It follows the same pattern laid out by `vkb::InstanceBuilder`.
The `vkb::PhysicalDeviceSelector` will look for the first device in the list that satisfied all the specified criteria, and if none is found, will return the first device that partially satisfies the criteria.
The various "require" and "desire" pairs of functions indicate to `vk-bootstrap` what features and capabilities are necessary for an application and what are simply preferred. A "require" function will fail any `VkPhysicalDevice` that doesn't satisfy the constraint, while any criteria that doesn't satisfy the "desire" functions will make the `VkPhysicalDevice` only 'partially satisfy'.
```c
// Application cannot function without this extension
Because `vk-bootstrap` does not manage creating a `VkSurfaceKHR` handle, it is explicitly passed into the `vkb::PhysicalDeviceSelector` for proper querying of surface support details. Unless the `vkb::InstanceBuilder::set_headless()` function was called, the physical device selector will emit `no_surface_provided` error. If an application does intend to present but cannot create a `VkSurfaceKHR` handle before physical device selection, use `defer_surface_initialization()` to disable the `no_surface_provided` error.
Once a `VkPhysicalDevice` has been selected, a `VkDevice` can be created. Facilitating that is the `vkb::DeviceBuilder`. Creation and usage follows the forms laid out by `vkb::InstanceBuilder`.
The features and extensions used as selection criteria in `vkb::PhysicalDeviceSelector` automatically propagate into `vkb::DeviceBuilder`. Because of this, there is no way to enable features or extensions that were not specified during `vkb::PhysicalDeviceSelector`. This is by design as any feature or extension enabled in a device *must* have support from the `VkPhysicalDevice` it is created with.
The common method to extend Vulkan functionality in existing API calls is to use the pNext chain. This is accounted for `VkDevice` creation with the `add_pNext` member function of `vkb::DeviceBuilder`. Note: Any structures added to the pNext chain must remain valid until `build()` is called.
By default, `vkb::DeviceBuilder` will enable one queue from each queue family available on the `VkPhysicalDevice`. This is done because in practice, most use cases only need a single queue from each family.
To get a `VkQueue` or the index of a `VkQueue`, use the `get_queue(QueueType type)` and `get_queue_index(QueueType type)` functions of `vkb::Device`. These will return the appropriate `VkQueue` or `uint32_t` if they exist and were enabled, else they will return an error.
```cpp
auto queue_ret = vkb_device.get_queue (vkb::QueueType::graphics);
if (!queue_ret) {
// handle error
}
graphics_queue = queue_ret.value ();
```
Queue families represent a set of queues with similar operations, such as graphics, transfer, and compute. Because not all Vulkan hardware has queue families for each operation category, an application should be able to handle the presence or lack of certain queue families. For this reason the `get_dedicated_queue` and `get_dedicated_queue_index` functions of `vkb::Device` exist to allow applications to easily know if there is a queue dedicated to a particular operation, such as compute or transfer operations.
If an application wishes to have more fine grained control over their queue setup, they should create a `std::vector` of `vkb::CustomQueueDescription` which describe the index, count and a `std::vector<float>` of priorities. To build up such a vector, use the `get_queue_families` function in `vkb::PhysicalDevice` to get a `std::vector<VkQueueFamilyProperties>`
Creating a swapchain follows the same form outlined by `vkb::InstanceBuilder` and `vkb::DeviceBuilder`. Create the `vkb::SwapchainBuilder`, provide `vkb::Device`, call the appropriate builder functions, and call `build()`.
By default, the swapchain will use the VK_FORMAT_B8G8R8A8_SRGB or VK_FORMAT_R8G8B8A8_SRGB image format with the color space VK_COLOR_SPACE_SRGB_NONLINEAR_KHR. The present mode will default to VK_PRESENT_MODE_MAILBOX_KHR if available and fallback to VK_PRESENT_MODE_FIFO_KHR. The image usage default flag is VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT.
Recreating the swapchain is equivalent to creating a new swapchain but providing the old swapchain as a source. Be sure to not use the same `VkSwapchainKHR` again as it expires when it is recycled after trying to create a new swapchain.