[MLIR,Python] Support converting boolean numpy arrays to and from mlir attributes (unrevert) (#115481)

This PR re-introduces the functionality of
https://github.com/llvm/llvm-project/pull/113064, which was reverted in
0a68171b3c
due to memory lifetime issues.

Notice that I was not able to re-produce the ASan results myself, so I
have not been able to verify that this PR really fixes the issue.

---

Currently it is unsupported to:
1. Convert a MlirAttribute with type i1 to a numpy array
2. Convert a boolean numpy array to a MlirAttribute

Currently the entire Python application violently crashes with a quite
poor error message https://github.com/pybind/pybind11/issues/3336

The complication handling these conversions, is that MlirAttribute
represent booleans as a bit-packed i1 type, whereas numpy represents
booleans as a byte array with 8 bit used per boolean.

This PR proposes the following approach:
1. When converting a i1 typed MlirAttribute to a numpy array, we can not
directly use the underlying raw data backing the MlirAttribute as a
buffer to Python, as done for other types. Instead, a copy of the data
is generated using numpy's unpackbits function, and the result is send
back to Python.
2. When constructing a MlirAttribute from a numpy array, first the
python data is read as a uint8_t to get it converted to the endianess
used internally in mlir. Then the booleans are bitpacked using numpy's
bitpack function, and the bitpacked array is saved as the MlirAttribute
representation.
This commit is contained in:
Kasper Nielsen 2024-11-12 22:23:10 -08:00 committed by GitHub
parent 804d3c4ce1
commit 1824e45cd7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 267 additions and 95 deletions

View File

@ -13,6 +13,7 @@
#include "IRModule.h"
#include "PybindUtils.h"
#include <pybind11/numpy.h>
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/raw_ostream.h"
@ -757,103 +758,10 @@ public:
throw py::error_already_set();
}
auto freeBuffer = llvm::make_scope_exit([&]() { PyBuffer_Release(&view); });
SmallVector<int64_t> shape;
if (explicitShape) {
shape.append(explicitShape->begin(), explicitShape->end());
} else {
shape.append(view.shape, view.shape + view.ndim);
}
MlirAttribute encodingAttr = mlirAttributeGetNull();
MlirContext context = contextWrapper->get();
// Detect format codes that are suitable for bulk loading. This includes
// all byte aligned integer and floating point types up to 8 bytes.
// Notably, this excludes, bool (which needs to be bit-packed) and
// other exotics which do not have a direct representation in the buffer
// protocol (i.e. complex, etc).
std::optional<MlirType> bulkLoadElementType;
if (explicitType) {
bulkLoadElementType = *explicitType;
} else {
std::string_view format(view.format);
if (format == "f") {
// f32
assert(view.itemsize == 4 && "mismatched array itemsize");
bulkLoadElementType = mlirF32TypeGet(context);
} else if (format == "d") {
// f64
assert(view.itemsize == 8 && "mismatched array itemsize");
bulkLoadElementType = mlirF64TypeGet(context);
} else if (format == "e") {
// f16
assert(view.itemsize == 2 && "mismatched array itemsize");
bulkLoadElementType = mlirF16TypeGet(context);
} else if (isSignedIntegerFormat(format)) {
if (view.itemsize == 4) {
// i32
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 32)
: mlirIntegerTypeSignedGet(context, 32);
} else if (view.itemsize == 8) {
// i64
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 64)
: mlirIntegerTypeSignedGet(context, 64);
} else if (view.itemsize == 1) {
// i8
bulkLoadElementType = signless ? mlirIntegerTypeGet(context, 8)
: mlirIntegerTypeSignedGet(context, 8);
} else if (view.itemsize == 2) {
// i16
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 16)
: mlirIntegerTypeSignedGet(context, 16);
}
} else if (isUnsignedIntegerFormat(format)) {
if (view.itemsize == 4) {
// unsigned i32
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 32)
: mlirIntegerTypeUnsignedGet(context, 32);
} else if (view.itemsize == 8) {
// unsigned i64
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 64)
: mlirIntegerTypeUnsignedGet(context, 64);
} else if (view.itemsize == 1) {
// i8
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 8)
: mlirIntegerTypeUnsignedGet(context, 8);
} else if (view.itemsize == 2) {
// i16
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 16)
: mlirIntegerTypeUnsignedGet(context, 16);
}
}
if (!bulkLoadElementType) {
throw std::invalid_argument(
std::string("unimplemented array format conversion from format: ") +
std::string(format));
}
}
MlirType shapedType;
if (mlirTypeIsAShaped(*bulkLoadElementType)) {
if (explicitShape) {
throw std::invalid_argument("Shape can only be specified explicitly "
"when the type is not a shaped type.");
}
shapedType = *bulkLoadElementType;
} else {
shapedType = mlirRankedTensorTypeGet(shape.size(), shape.data(),
*bulkLoadElementType, encodingAttr);
}
size_t rawBufferSize = view.len;
MlirAttribute attr =
mlirDenseElementsAttrRawBufferGet(shapedType, rawBufferSize, view.buf);
MlirAttribute attr = getAttributeFromBuffer(view, signless, explicitType,
explicitShape, context);
if (mlirAttributeIsNull(attr)) {
throw std::invalid_argument(
"DenseElementsAttr could not be constructed from the given buffer. "
@ -963,6 +871,13 @@ public:
// unsigned i16
return bufferInfo<uint16_t>(shapedType);
}
} else if (mlirTypeIsAInteger(elementType) &&
mlirIntegerTypeGetWidth(elementType) == 1) {
// i1 / bool
// We can not send the buffer directly back to Python, because the i1
// values are bitpacked within MLIR. We call numpy's unpackbits function
// to convert the bytes.
return getBooleanBufferFromBitpackedAttribute();
}
// TODO: Currently crashes the program.
@ -1016,6 +931,191 @@ private:
code == 'q';
}
static MlirType
getShapedType(std::optional<MlirType> bulkLoadElementType,
std::optional<std::vector<int64_t>> explicitShape,
Py_buffer &view) {
SmallVector<int64_t> shape;
if (explicitShape) {
shape.append(explicitShape->begin(), explicitShape->end());
} else {
shape.append(view.shape, view.shape + view.ndim);
}
if (mlirTypeIsAShaped(*bulkLoadElementType)) {
if (explicitShape) {
throw std::invalid_argument("Shape can only be specified explicitly "
"when the type is not a shaped type.");
}
return *bulkLoadElementType;
} else {
MlirAttribute encodingAttr = mlirAttributeGetNull();
return mlirRankedTensorTypeGet(shape.size(), shape.data(),
*bulkLoadElementType, encodingAttr);
}
}
static MlirAttribute getAttributeFromBuffer(
Py_buffer &view, bool signless, std::optional<PyType> explicitType,
std::optional<std::vector<int64_t>> explicitShape, MlirContext &context) {
// Detect format codes that are suitable for bulk loading. This includes
// all byte aligned integer and floating point types up to 8 bytes.
// Notably, this excludes exotics types which do not have a direct
// representation in the buffer protocol (i.e. complex, etc).
std::optional<MlirType> bulkLoadElementType;
if (explicitType) {
bulkLoadElementType = *explicitType;
} else {
std::string_view format(view.format);
if (format == "f") {
// f32
assert(view.itemsize == 4 && "mismatched array itemsize");
bulkLoadElementType = mlirF32TypeGet(context);
} else if (format == "d") {
// f64
assert(view.itemsize == 8 && "mismatched array itemsize");
bulkLoadElementType = mlirF64TypeGet(context);
} else if (format == "e") {
// f16
assert(view.itemsize == 2 && "mismatched array itemsize");
bulkLoadElementType = mlirF16TypeGet(context);
} else if (format == "?") {
// i1
// The i1 type needs to be bit-packed, so we will handle it seperately
return getBitpackedAttributeFromBooleanBuffer(view, explicitShape,
context);
} else if (isSignedIntegerFormat(format)) {
if (view.itemsize == 4) {
// i32
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 32)
: mlirIntegerTypeSignedGet(context, 32);
} else if (view.itemsize == 8) {
// i64
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 64)
: mlirIntegerTypeSignedGet(context, 64);
} else if (view.itemsize == 1) {
// i8
bulkLoadElementType = signless ? mlirIntegerTypeGet(context, 8)
: mlirIntegerTypeSignedGet(context, 8);
} else if (view.itemsize == 2) {
// i16
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 16)
: mlirIntegerTypeSignedGet(context, 16);
}
} else if (isUnsignedIntegerFormat(format)) {
if (view.itemsize == 4) {
// unsigned i32
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 32)
: mlirIntegerTypeUnsignedGet(context, 32);
} else if (view.itemsize == 8) {
// unsigned i64
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 64)
: mlirIntegerTypeUnsignedGet(context, 64);
} else if (view.itemsize == 1) {
// i8
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 8)
: mlirIntegerTypeUnsignedGet(context, 8);
} else if (view.itemsize == 2) {
// i16
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 16)
: mlirIntegerTypeUnsignedGet(context, 16);
}
}
if (!bulkLoadElementType) {
throw std::invalid_argument(
std::string("unimplemented array format conversion from format: ") +
std::string(format));
}
}
MlirType type = getShapedType(bulkLoadElementType, explicitShape, view);
return mlirDenseElementsAttrRawBufferGet(type, view.len, view.buf);
}
// There is a complication for boolean numpy arrays, as numpy represents them
// as 8 bits (1 byte) per boolean, whereas MLIR bitpacks them into 8 booleans
// per byte.
static MlirAttribute getBitpackedAttributeFromBooleanBuffer(
Py_buffer &view, std::optional<std::vector<int64_t>> explicitShape,
MlirContext &context) {
if (llvm::endianness::native != llvm::endianness::little) {
// Given we have no good way of testing the behavior on big-endian systems
// we will throw
throw py::type_error("Constructing a bit-packed MLIR attribute is "
"unsupported on big-endian systems");
}
py::array_t<uint8_t> unpackedArray(view.len,
static_cast<uint8_t *>(view.buf));
py::module numpy = py::module::import("numpy");
py::object packbitsFunc = numpy.attr("packbits");
py::object packedBooleans =
packbitsFunc(unpackedArray, "bitorder"_a = "little");
py::buffer_info pythonBuffer = packedBooleans.cast<py::buffer>().request();
MlirType bitpackedType =
getShapedType(mlirIntegerTypeGet(context, 1), explicitShape, view);
assert(pythonBuffer.itemsize == 1 && "Packbits must return uint8");
// Notice that `mlirDenseElementsAttrRawBufferGet` copies the memory of
// packedBooleans, hence the MlirAttribute will remain valid even when
// packedBooleans get reclaimed by the end of the function.
return mlirDenseElementsAttrRawBufferGet(bitpackedType, pythonBuffer.size,
pythonBuffer.ptr);
}
// This does the opposite transformation of
// `getBitpackedAttributeFromBooleanBuffer`
py::buffer_info getBooleanBufferFromBitpackedAttribute() {
if (llvm::endianness::native != llvm::endianness::little) {
// Given we have no good way of testing the behavior on big-endian systems
// we will throw
throw py::type_error("Constructing a numpy array from a MLIR attribute "
"is unsupported on big-endian systems");
}
int64_t numBooleans = mlirElementsAttrGetNumElements(*this);
int64_t numBitpackedBytes = llvm::divideCeil(numBooleans, 8);
uint8_t *bitpackedData = static_cast<uint8_t *>(
const_cast<void *>(mlirDenseElementsAttrGetRawData(*this)));
py::array_t<uint8_t> packedArray(numBitpackedBytes, bitpackedData);
py::module numpy = py::module::import("numpy");
py::object unpackbitsFunc = numpy.attr("unpackbits");
py::object equalFunc = numpy.attr("equal");
py::object reshapeFunc = numpy.attr("reshape");
py::array unpackedBooleans =
unpackbitsFunc(packedArray, "bitorder"_a = "little");
// Unpackbits operates on bytes and gives back a flat 0 / 1 integer array.
// We need to:
// 1. Slice away the padded bits
// 2. Make the boolean array have the correct shape
// 3. Convert the array to a boolean array
unpackedBooleans = unpackedBooleans[py::slice(0, numBooleans, 1)];
unpackedBooleans = equalFunc(unpackedBooleans, 1);
std::vector<intptr_t> shape;
MlirType shapedType = mlirAttributeGetType(*this);
intptr_t rank = mlirShapedTypeGetRank(shapedType);
for (intptr_t i = 0; i < rank; ++i) {
shape.push_back(mlirShapedTypeGetDimSize(shapedType, i));
}
unpackedBooleans = reshapeFunc(unpackedBooleans, shape);
// Make sure the returned py::buffer_view claims ownership of the data in
// `pythonBuffer` so it remains valid when Python reads it
py::buffer pythonBuffer = unpackedBooleans.cast<py::buffer>();
return pythonBuffer.request();
}
template <typename Type>
py::buffer_info bufferInfo(MlirType shapedType,
const char *explicitFormat = nullptr) {

View File

@ -326,6 +326,78 @@ def testGetDenseElementsF64():
print(np.array(attr))
### 1 bit/boolean integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI1Signless
@run
def testGetDenseElementsI1Signless():
with Context():
array = np.array([True], dtype=np.bool_)
attr = DenseElementsAttr.get(array)
# CHECK: dense<true> : tensor<1xi1>
print(attr)
# CHECK{LITERAL}: [ True]
print(np.array(attr))
array = np.array([[True, False, True], [True, True, False]], dtype=np.bool_)
attr = DenseElementsAttr.get(array)
# CHECK{LITERAL}: dense<[[true, false, true], [true, true, false]]> : tensor<2x3xi1>
print(attr)
# CHECK{LITERAL}: [[ True False True]
# CHECK{LITERAL}: [ True True False]]
print(np.array(attr))
array = np.array(
[[True, True, False, False], [True, False, True, False]], dtype=np.bool_
)
attr = DenseElementsAttr.get(array)
# CHECK{LITERAL}: dense<[[true, true, false, false], [true, false, true, false]]> : tensor<2x4xi1>
print(attr)
# CHECK{LITERAL}: [[ True True False False]
# CHECK{LITERAL}: [ True False True False]]
print(np.array(attr))
array = np.array(
[
[True, True, False, False],
[True, False, True, False],
[False, False, False, False],
[True, True, True, True],
[True, False, False, True],
],
dtype=np.bool_,
)
attr = DenseElementsAttr.get(array)
# CHECK{LITERAL}: dense<[[true, true, false, false], [true, false, true, false], [false, false, false, false], [true, true, true, true], [true, false, false, true]]> : tensor<5x4xi1>
print(attr)
# CHECK{LITERAL}: [[ True True False False]
# CHECK{LITERAL}: [ True False True False]
# CHECK{LITERAL}: [False False False False]
# CHECK{LITERAL}: [ True True True True]
# CHECK{LITERAL}: [ True False False True]]
print(np.array(attr))
array = np.array(
[
[True, True, False, False, True, True, False, False, False],
[False, False, False, True, False, True, True, False, True],
],
dtype=np.bool_,
)
attr = DenseElementsAttr.get(array)
# CHECK{LITERAL}: dense<[[true, true, false, false, true, true, false, false, false], [false, false, false, true, false, true, true, false, true]]> : tensor<2x9xi1>
print(attr)
# CHECK{LITERAL}: [[ True True False False True True False False False]
# CHECK{LITERAL}: [False False False True False True True False True]]
print(np.array(attr))
array = np.array([], dtype=np.bool_)
attr = DenseElementsAttr.get(array)
# CHECK: dense<> : tensor<0xi1>
print(attr)
# CHECK{LITERAL}: []
print(np.array(attr))
### 16 bit integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI16Signless
@run