Revert "ELF: Add branch-to-branch optimization."

This caused assertion failures in applyBranchToBranchOpt():

  llvm/include/llvm/Support/Casting.h:578:
  decltype(auto) llvm::cast(From*)
  [with To = lld:🧝:InputSection; From = lld:🧝:InputSectionBase]:
  Assertion `isa<To>(Val) && "cast<Ty>() argument of incompatible type!"' failed.

See comment on the PR (https://github.com/llvm/llvm-project/pull/138366)

This reverts commit 491b82a5ec1add78d2c93370580a2f1897b6a364.

This also reverts the follow-up "[lld] Use llvm::partition_point (NFC) (#145209)"

This reverts commit 2ac293f5ac4cf65c0c038bf75a88f1d6715e467d.
This commit is contained in:
Hans Wennborg 2025-06-23 13:14:09 +02:00
parent 6d8d4cf9a4
commit 1e95349dbe
13 changed files with 6 additions and 462 deletions

View File

@ -11,7 +11,6 @@
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "TargetImpl.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/Endian.h"
@ -83,7 +82,6 @@ public:
uint64_t val) const override;
RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
void applyBranchToBranchOpt() const override;
private:
void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
@ -976,62 +974,6 @@ void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
}
}
static std::optional<uint64_t> getControlTransferAddend(InputSection &is,
Relocation &r) {
// Identify a control transfer relocation for the branch-to-branch
// optimization. A "control transfer relocation" means a B or BL
// target but it also includes relative vtable relocations for example.
//
// We require the relocation type to be JUMP26, CALL26 or PLT32. With a
// relocation type of PLT32 the value may be assumed to be used for branching
// directly to the symbol and the addend is only used to produce the relocated
// value (hence the effective addend is always 0). This is because if a PLT is
// needed the addend will be added to the address of the PLT, and it doesn't
// make sense to branch into the middle of a PLT. For example, relative vtable
// relocations use PLT32 and 0 or a positive value as the addend but still are
// used to branch to the symbol.
//
// With JUMP26 or CALL26 the only reasonable interpretation of a non-zero
// addend is that we are branching to symbol+addend so that becomes the
// effective addend.
if (r.type == R_AARCH64_PLT32)
return 0;
if (r.type == R_AARCH64_JUMP26 || r.type == R_AARCH64_CALL26)
return r.addend;
return std::nullopt;
}
static std::pair<Relocation *, uint64_t>
getBranchInfoAtTarget(InputSection &is, uint64_t offset) {
auto *i = llvm::partition_point(
is.relocations, [&](Relocation &r) { return r.offset < offset; });
if (i != is.relocations.end() && i->offset == offset &&
i->type == R_AARCH64_JUMP26) {
return {i, i->addend};
}
return {nullptr, 0};
}
static void redirectControlTransferRelocations(Relocation &r1,
const Relocation &r2) {
r1.expr = r2.expr;
r1.sym = r2.sym;
// With PLT32 we must respect the original addend as that affects the value's
// interpretation. With the other relocation types the original addend is
// irrelevant because it referred to an offset within the original target
// section so we overwrite it.
if (r1.type == R_AARCH64_PLT32)
r1.addend += r2.addend;
else
r1.addend = r2.addend;
}
void AArch64::applyBranchToBranchOpt() const {
applyBranchToBranchOptImpl(ctx, getControlTransferAddend,
getBranchInfoAtTarget,
redirectControlTransferRelocations);
}
// AArch64 may use security features in variant PLT sequences. These are:
// Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
// Indicator (BTI) introduced in armv8.5-a. The additional instructions used

View File

@ -1,93 +0,0 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_ARCH_TARGETIMPL_H
#define LLD_ELF_ARCH_TARGETIMPL_H
#include "InputFiles.h"
#include "InputSection.h"
#include "Relocations.h"
#include "Symbols.h"
#include "llvm/BinaryFormat/ELF.h"
namespace lld::elf {
// getControlTransferAddend: If this relocation is used for control transfer
// instructions (e.g. branch, branch-link or call) or code references (e.g.
// virtual function pointers) and indicates an address-insignificant reference,
// return the effective addend for the relocation, otherwise return
// std::nullopt. The effective addend for a relocation is the addend that is
// used to determine its branch destination.
//
// getBranchInfoAtTarget: If a control transfer relocation referring to
// is+offset directly transfers control to a relocated branch instruction in the
// specified section, return the relocation for the branch target as well as its
// effective addend (see above). Otherwise return {nullptr, 0}.
//
// redirectControlTransferRelocations: Given r1, a relocation for which
// getControlTransferAddend() returned a value, and r2, a relocation returned by
// getBranchInfo(), modify r1 so that it branches directly to the target of r2.
template <typename GetControlTransferAddend, typename GetBranchInfoAtTarget,
typename RedirectControlTransferRelocations>
inline void applyBranchToBranchOptImpl(
Ctx &ctx, GetControlTransferAddend getControlTransferAddend,
GetBranchInfoAtTarget getBranchInfoAtTarget,
RedirectControlTransferRelocations redirectControlTransferRelocations) {
// Needs to run serially because it writes to the relocations array as well as
// reading relocations of other sections.
for (ELFFileBase *f : ctx.objectFiles) {
auto getRelocBranchInfo =
[&getBranchInfoAtTarget](
Relocation &r,
uint64_t addend) -> std::pair<Relocation *, uint64_t> {
auto *target = dyn_cast_or_null<Defined>(r.sym);
// We don't allow preemptible symbols or ifuncs (may go somewhere else),
// absolute symbols (runtime behavior unknown), non-executable or writable
// memory (ditto) or non-regular sections (no section data).
if (!target || target->isPreemptible || target->isGnuIFunc() ||
!target->section ||
!(target->section->flags & llvm::ELF::SHF_EXECINSTR) ||
(target->section->flags & llvm::ELF::SHF_WRITE) ||
target->section->kind() != SectionBase::Regular)
return {nullptr, 0};
return getBranchInfoAtTarget(*cast<InputSection>(target->section),
target->value + addend);
};
for (InputSectionBase *s : f->getSections()) {
if (!s)
continue;
for (Relocation &r : s->relocations) {
std::optional<uint64_t> addend =
getControlTransferAddend(*cast<InputSection>(s), r);
if (!addend)
continue;
std::pair<Relocation *, uint64_t> targetAndAddend =
getRelocBranchInfo(r, *addend);
if (!targetAndAddend.first)
continue;
// Avoid getting stuck in an infinite loop if we encounter a branch
// that (possibly indirectly) branches to itself. It is unlikely
// that more than 5 iterations will ever be needed in practice.
size_t iterations = 5;
while (iterations--) {
std::pair<Relocation *, uint64_t> nextTargetAndAddend =
getRelocBranchInfo(*targetAndAddend.first,
targetAndAddend.second);
if (!nextTargetAndAddend.first)
break;
targetAndAddend = nextTargetAndAddend;
}
redirectControlTransferRelocations(r, *targetAndAddend.first);
}
}
}
}
} // namespace lld::elf
#endif

View File

@ -11,7 +11,6 @@
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "TargetImpl.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MathExtras.h"
@ -50,7 +49,6 @@ public:
bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
InputSection *nextIS) const override;
bool relaxOnce(int pass) const override;
void applyBranchToBranchOpt() const override;
private:
void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
@ -1163,72 +1161,6 @@ void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
}
}
static std::optional<uint64_t> getControlTransferAddend(InputSection &is,
Relocation &r) {
// Identify a control transfer relocation for the branch-to-branch
// optimization. A "control transfer relocation" usually means a CALL or JMP
// target but it also includes relative vtable relocations for example.
//
// We require the relocation type to be PLT32. With a relocation type of PLT32
// the value may be assumed to be used for branching directly to the symbol
// and the addend is only used to produce the relocated value (hence the
// effective addend is always 0). This is because if a PLT is needed the
// addend will be added to the address of the PLT, and it doesn't make sense
// to branch into the middle of a PLT. For example, relative vtable
// relocations use PLT32 and 0 or a positive value as the addend but still are
// used to branch to the symbol.
//
// STT_SECTION symbols are a special case on x86 because the LLVM assembler
// uses them for branches to local symbols which are assembled as referring to
// the section symbol with the addend equal to the symbol value - 4.
if (r.type == R_X86_64_PLT32) {
if (r.sym->isSection())
return r.addend + 4;
return 0;
}
return std::nullopt;
}
static std::pair<Relocation *, uint64_t>
getBranchInfoAtTarget(InputSection &is, uint64_t offset) {
auto content = is.contentMaybeDecompress();
if (content.size() > offset && content[offset] == 0xe9) { // JMP immediate
auto *i = llvm::partition_point(
is.relocations, [&](Relocation &r) { return r.offset < offset + 1; });
// Unlike with getControlTransferAddend() it is valid to accept a PC32
// relocation here because we know that this is actually a JMP and not some
// other reference, so the interpretation is that we add 4 to the addend and
// use that as the effective addend.
if (i != is.relocations.end() && i->offset == offset + 1 &&
(i->type == R_X86_64_PC32 || i->type == R_X86_64_PLT32)) {
return {i, i->addend + 4};
}
}
return {nullptr, 0};
}
static void redirectControlTransferRelocations(Relocation &r1,
const Relocation &r2) {
// The isSection() check handles the STT_SECTION case described above.
// In that case the original addend is irrelevant because it referred to an
// offset within the original target section so we overwrite it.
//
// The +4 is here to compensate for r2.addend which will likely be -4,
// but may also be addend-4 in case of a PC32 branch to symbol+addend.
if (r1.sym->isSection())
r1.addend = r2.addend;
else
r1.addend += r2.addend + 4;
r1.expr = r2.expr;
r1.sym = r2.sym;
}
void X86_64::applyBranchToBranchOpt() const {
applyBranchToBranchOptImpl(ctx, getControlTransferAddend,
getBranchInfoAtTarget,
redirectControlTransferRelocations);
}
// If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
// entries containing endbr64 instructions. A PLT entry will be split into two
// parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).

View File

@ -302,7 +302,6 @@ struct Config {
bool bpFunctionOrderForCompression = false;
bool bpDataOrderForCompression = false;
bool bpVerboseSectionOrderer = false;
bool branchToBranch = false;
bool checkSections;
bool checkDynamicRelocs;
std::optional<llvm::DebugCompressionType> compressDebugSections;

View File

@ -1644,8 +1644,6 @@ static void readConfigs(Ctx &ctx, opt::InputArgList &args) {
ctx.arg.zWxneeded = hasZOption(args, "wxneeded");
setUnresolvedSymbolPolicy(ctx, args);
ctx.arg.power10Stubs = args.getLastArgValue(OPT_power10_stubs_eq) != "no";
ctx.arg.branchToBranch = args.hasFlag(
OPT_branch_to_branch, OPT_no_branch_to_branch, ctx.arg.optimize >= 2);
if (opt::Arg *arg = args.getLastArg(OPT_eb, OPT_el)) {
if (arg->getOption().matches(OPT_eb))

View File

@ -430,9 +430,8 @@ InputSectionBase *InputSection::getRelocatedSection() const {
template <class ELFT, class RelTy>
void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf) {
bool linkerRelax =
ctx.arg.relax && is_contained({EM_RISCV, EM_LOONGARCH}, ctx.arg.emachine);
if (!ctx.arg.relocatable && (linkerRelax || ctx.arg.branchToBranch)) {
if (ctx.arg.relax && !ctx.arg.relocatable &&
(ctx.arg.emachine == EM_RISCV || ctx.arg.emachine == EM_LOONGARCH)) {
// On LoongArch and RISC-V, relaxation might change relocations: copy
// from internal ones that are updated by relaxation.
InputSectionBase *sec = getRelocatedSection();

View File

@ -59,10 +59,6 @@ def build_id: J<"build-id=">, HelpText<"Generate build ID note">,
MetaVarName<"[fast,md5,sha1,uuid,0x<hexstring>]">;
def : F<"build-id">, Alias<build_id>, AliasArgs<["sha1"]>, HelpText<"Alias for --build-id=sha1">;
defm branch_to_branch: BB<"branch-to-branch",
"Enable branch-to-branch optimization (default at -O2)",
"Disable branch-to-branch optimization (default at -O0 and -O1)">;
defm check_sections: B<"check-sections",
"Check section addresses for overlaps (default)",
"Do not check section addresses for overlaps">;

View File

@ -1665,10 +1665,9 @@ void RelocationScanner::scan(Relocs<RelTy> rels) {
}
// Sort relocations by offset for more efficient searching for
// R_RISCV_PCREL_HI20, R_PPC64_ADDR64 and the branch-to-branch optimization.
// R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
if (ctx.arg.emachine == EM_RISCV ||
(ctx.arg.emachine == EM_PPC64 && sec->name == ".toc") ||
ctx.arg.branchToBranch)
(ctx.arg.emachine == EM_PPC64 && sec->name == ".toc"))
llvm::stable_sort(sec->relocs(),
[](const Relocation &lhs, const Relocation &rhs) {
return lhs.offset < rhs.offset;
@ -1959,9 +1958,6 @@ void elf::postScanRelocations(Ctx &ctx) {
for (ELFFileBase *file : ctx.objectFiles)
for (Symbol *sym : file->getLocalSymbols())
fn(*sym);
if (ctx.arg.branchToBranch)
ctx.target->applyBranchToBranchOpt();
}
static bool mergeCmp(const InputSection *a, const InputSection *b) {

View File

@ -101,7 +101,6 @@ public:
virtual void applyJumpInstrMod(uint8_t *loc, JumpModType type,
JumpModType val) const {}
virtual void applyBranchToBranchOpt() const {}
virtual ~TargetInfo();

View File

@ -62,10 +62,6 @@ ELF Improvements
on executable sections.
(`#128883 <https://github.com/llvm/llvm-project/pull/128883>`_)
* For AArch64 and X86_64, added ``--branch-to-branch``, which rewrites branches
that point to another branch instruction to instead branch directly to the
target of the second instruction. Enabled by default at ``-O2``.
Breaking changes
----------------
* Executable-only and readable-executable sections are now allowed to be placed

View File

@ -93,11 +93,6 @@ Bind default visibility defined STB_GLOBAL function symbols locally for
.Fl shared.
.It Fl -be8
Write a Big Endian ELF File using BE8 format(AArch32 only)
.It Fl -branch-to-branch
Enable the branch-to-branch optimizations: a branch whose target is
another branch instruction is rewritten to point to the latter branch
target (AArch64 and X86_64 only). Enabled by default at
.Fl O2 Ns .
.It Fl -build-id Ns = Ns Ar value
Generate a build ID note.
.Ar value
@ -419,7 +414,7 @@ If not specified,
.Dv a.out
is used as a default.
.It Fl O Ns Ar value
Optimize output file.
Optimize output file size.
.Ar value
may be:
.Pp
@ -429,7 +424,7 @@ Disable string merging.
.It Cm 1
Enable string merging.
.It Cm 2
Enable string tail merging and branch-to-branch optimization.
Enable string tail merging.
.El
.Pp
.Fl O Ns Cm 1

View File

@ -1,82 +0,0 @@
# REQUIRES: aarch64
## Test that the branch-to-branch optimization follows the links
## from f1 -> f2 -> f3 and updates all references to point to f3.
# RUN: llvm-mc -filetype=obj -triple=aarch64-pc-linux %s -o %t.o
# RUN: ld.lld %t.o -o %t --branch-to-branch --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,B2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,B2B-RELOC %s
# RUN: ld.lld %t.o -o %t -O2 --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,B2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,B2B-RELOC %s
## Test that branch-to-branch is disabled by default.
# RUN: ld.lld %t.o -o %t --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,NOB2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,NOB2B-RELOC %s
# RUN: ld.lld %t.o -o %t -O2 --no-branch-to-branch --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,NOB2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,NOB2B-RELOC %s
## Test that branch-to-branch is disabled for preemptible symbols.
# RUN: ld.lld %t.o -o %t --branch-to-branch -shared --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,NOB2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,NOB2B-RELOC %s
.section .rodata.vtable,"a"
.globl vtable
vtable:
# B2B: Contents of section .rodata:
# RELOC: RELOCATION RECORDS FOR [.rodata]:
# RELOC-NEXT: OFFSET
# B2B-NEXT: [[VF:[0-9a-f]{8}]]
# B2B-RELOC-NEXT: R_AARCH64_PLT32 f3
# NOB2B-RELOC-NEXT: R_AARCH64_PLT32 f1
.4byte f1@PLT - vtable
# B2B-SAME: [[VF]]
# B2B-RELOC-NEXT: R_AARCH64_PLT32 f3+0x4
# NOB2B-RELOC-NEXT: R_AARCH64_PLT32 f2+0x4
.4byte f2@PLT - vtable
# B2B-SAME: [[VF]]
# RELOC-NEXT: R_AARCH64_PLT32 f3+0x8
.4byte f3@PLT - vtable
.section .text._start,"ax"
.globl _start
# CHECK: <_start>:
# RELOC: RELOCATION RECORDS FOR [.text]:
# RELOC-NEXT: OFFSET
_start:
# B2B: bl {{.*}} <f3>
# B2B-RELOC-NEXT: R_AARCH64_CALL26 f3
# NOB2B: bl {{.*}} <f1{{.*}}>
# NOB2B-RELOC-NEXT: R_AARCH64_CALL26 f1
bl f1
# B2B: b {{.*}} <f3>
# B2B-RELOC-NEXT: R_AARCH64_JUMP26 f3
# NOB2B: b {{.*}} <f2{{.*}}>
# NOB2B-RELOC-NEXT: R_AARCH64_JUMP26 f2
b f2
.section .text.f1,"ax"
.globl f1
f1:
# B2B-RELOC-NEXT: R_AARCH64_JUMP26 f3
# NOB2B-RELOC-NEXT: R_AARCH64_JUMP26 f2
b f2
.section .text.f2,"ax"
.globl f2
# CHECK: <f2>:
f2:
# CHECK-NEXT: b {{.*}} <f3{{.*}}>
# RELOC-NEXT: R_AARCH64_JUMP26 f3
b f3
.section .text.f3,"ax"
.globl f3
f3:
ret

View File

@ -1,133 +0,0 @@
# REQUIRES: x86
## Test that the branch-to-branch optimization follows the links
## from f1 -> f2 -> f3 and updates all references to point to f3.
# RUN: llvm-mc -filetype=obj -triple=x86_64-pc-linux %s -o %t.o
# RUN: ld.lld %t.o -o %t --branch-to-branch --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,B2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,B2B-RELOC %s
# RUN: ld.lld %t.o -o %t -O2 --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,B2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,B2B-RELOC %s
## Test that branch-to-branch is disabled by default.
# RUN: ld.lld %t.o -o %t --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,NOB2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,NOB2B-RELOC %s
# RUN: ld.lld %t.o -o %t -O2 --no-branch-to-branch --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,NOB2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,NOB2B-RELOC %s
## Test that branch-to-branch is disabled for preemptible symbols.
# RUN: ld.lld %t.o -o %t --branch-to-branch -shared --emit-relocs
# RUN: llvm-objdump -d -s %t | FileCheck --check-prefixes=CHECK,NOB2B %s
# RUN: llvm-objdump -r %t | FileCheck --check-prefixes=RELOC,NOB2B-RELOC %s
.section .rodata.vtable,"a"
.globl vtable
vtable:
# B2B: Contents of section .rodata:
# RELOC: RELOCATION RECORDS FOR [.rodata]:
# RELOC-NEXT: OFFSET
# B2B-NEXT: [[VF:[0-9a-f]{8}]]
# B2B-RELOC-NEXT: R_X86_64_PLT32 f3
# NOB2B-RELOC-NEXT: R_X86_64_PLT32 f1
.4byte f1@PLT - vtable
# B2B-SAME: [[VF]]
# B2B-RELOC-NEXT: R_X86_64_PLT32 f3+0x4
# NOB2B-RELOC-NEXT: R_X86_64_PLT32 f2+0x4
.4byte f2@PLT - vtable
# B2B-SAME: [[VF]]
# RELOC-NEXT: R_X86_64_PLT32 f3+0x8
.4byte f3@PLT - vtable
# For .rodata.f6
# B2B-RELOC-NEXT: R_X86_64_PLT32 f3-0x4
.section .text._start,"ax"
.globl _start
# CHECK: <_start>:
# RELOC: RELOCATION RECORDS FOR [.text]:
# RELOC-NEXT: OFFSET
_start:
# B2B-NEXT: jmp {{.*}} <f3>
# B2B-RELOC-NEXT: R_X86_64_PLT32 f3-0x4
# NOB2B-NEXT: jmp {{.*}} <f1{{.*}}>
# NOB2B-RELOC-NEXT: R_X86_64_PLT32 f1-0x4
jmp f1
# B2B-NEXT: jmp {{.*}} <f3>
# B2B-RELOC-NEXT: R_X86_64_PLT32 f3-0x4
# NOB2B-NEXT: jmp {{.*}} <f2{{.*}}>
# NOB2B-RELOC-NEXT: R_X86_64_PLT32 f2-0x4
jmp f2
# This will assemble to a relocation pointing to an STT_SECTION for .text.f4
# with an addend, which looks similar to the relative vtable cases above but
# requires different handling of the addend so that we don't think this is
# branching to the `jmp f3` at the start of the target section.
# CHECK-NEXT: jmp {{.*}} <f4{{.*}}>
# RELOC-NEXT: R_X86_64_PLT32 .text+0x2e
jmp f4
# B2B-NEXT: jmp 0x[[IPLT:[0-9a-f]*]]
# RELOC-NEXT: R_X86_64_PLT32 f5-0x4
jmp f5
# B2B-NEXT: jmp {{.*}} <f6>
# RELOC-NEXT: R_X86_64_PLT32 f6-0x4
jmp f6
# B2B-NEXT: jmp {{.*}} <f7>
# RELOC-NEXT: R_X86_64_PLT32 f7-0x4
jmp f7
.section .text.f1,"ax"
.globl f1
f1:
# B2B-RELOC-NEXT: R_X86_64_PLT32 f3-0x4
# NOB2B-RELOC-NEXT: R_X86_64_PLT32 f2-0x4
jmp f2
.section .text.f2,"ax"
.globl f2
# CHECK: <f2>:
f2:
# CHECK-NEXT: jmp {{.*}} <f3{{.*}}>
# RELOC-NEXT: R_X86_64_PLT32 f3-0x4
jmp f3
.section .text.f3,"ax"
.globl f3
f3:
# Test that a self-branch doesn't trigger an infinite loop.
# RELOC-NEXT: R_X86_64_PLT32 f3-0x4
jmp f3
.section .text.f4,"ax"
jmp f3
f4:
ret
.section .text.f5,"ax"
.type f5, @gnu_indirect_function
.globl f5
f5:
# RELOC-NEXT: R_X86_64_PLT32 f3-0x4
jmp f3
.section .rodata.f6,"a"
.globl f6
f6:
# RELOC-NEXT: R_X86_64_PLT32 f3-0x4
jmp f3
# RELOC: RELOCATION RECORDS FOR [.wtext.f7]:
# RELOC-NEXT: OFFSET
.section .wtext.f7,"awx"
.globl f7
f7:
# RELOC-NEXT: R_X86_64_PLT32 f3-0x4
jmp f3
# B2B: <.iplt>:
# B2B-NEXT: [[IPLT]]: