[mlir][NFC] update mlir
create APIs (34/n) (#150660)
See https://github.com/llvm/llvm-project/pull/147168 for more info.
This commit is contained in:
parent
b46527645d
commit
258daf5395
@ -402,8 +402,8 @@ public:
|
||||
Value actualOp = adaptValueType(adaptor.getIn(), rewriter, castSrcType);
|
||||
|
||||
// Actual cast (may change bitwidth)
|
||||
auto cast = rewriter.template create<emitc::CastOp>(op.getLoc(),
|
||||
castDestType, actualOp);
|
||||
auto cast =
|
||||
emitc::CastOp::create(rewriter, op.getLoc(), castDestType, actualOp);
|
||||
|
||||
// Cast to the expected output type
|
||||
auto result = adaptValueType(cast, rewriter, opReturnType);
|
||||
@ -507,8 +507,8 @@ public:
|
||||
Value lhs = adaptValueType(adaptor.getLhs(), rewriter, arithmeticType);
|
||||
Value rhs = adaptValueType(adaptor.getRhs(), rewriter, arithmeticType);
|
||||
|
||||
Value arithmeticResult = rewriter.template create<EmitCOp>(
|
||||
op.getLoc(), arithmeticType, lhs, rhs);
|
||||
Value arithmeticResult =
|
||||
EmitCOp::create(rewriter, op.getLoc(), arithmeticType, lhs, rhs);
|
||||
|
||||
Value result = adaptValueType(arithmeticResult, rewriter, type);
|
||||
|
||||
@ -547,8 +547,8 @@ public:
|
||||
Value lhs = adaptValueType(adaptor.getLhs(), rewriter, arithmeticType);
|
||||
Value rhs = adaptValueType(adaptor.getRhs(), rewriter, arithmeticType);
|
||||
|
||||
Value arithmeticResult = rewriter.template create<EmitCOp>(
|
||||
op.getLoc(), arithmeticType, lhs, rhs);
|
||||
Value arithmeticResult =
|
||||
EmitCOp::create(rewriter, op.getLoc(), arithmeticType, lhs, rhs);
|
||||
|
||||
Value result = adaptValueType(arithmeticResult, rewriter, type);
|
||||
|
||||
@ -748,8 +748,8 @@ public:
|
||||
}
|
||||
Value fpCastOperand = adaptor.getIn();
|
||||
if (actualOperandType != operandType) {
|
||||
fpCastOperand = rewriter.template create<emitc::CastOp>(
|
||||
castOp.getLoc(), actualOperandType, fpCastOperand);
|
||||
fpCastOperand = emitc::CastOp::create(rewriter, castOp.getLoc(),
|
||||
actualOperandType, fpCastOperand);
|
||||
}
|
||||
rewriter.replaceOpWithNewOp<emitc::CastOp>(castOp, dstType, fpCastOperand);
|
||||
|
||||
|
@ -68,9 +68,8 @@ struct CloneOpConversion : public OpConversionPattern<bufferization::CloneOp> {
|
||||
|
||||
scf::YieldOp::create(rewriter, loc, acc);
|
||||
};
|
||||
auto size = rewriter
|
||||
.create<scf::ForOp>(loc, zero, rank, one, ValueRange(one),
|
||||
loopBody)
|
||||
auto size = scf::ForOp::create(rewriter, loc, zero, rank, one,
|
||||
ValueRange(one), loopBody)
|
||||
.getResult(0);
|
||||
|
||||
MemRefType memrefType = MemRefType::get({ShapedType::kDynamic},
|
||||
|
@ -144,12 +144,11 @@ ControlFlowToSCFTransformation::createUnreachableTerminator(Location loc,
|
||||
return emitError(loc, "Cannot create unreachable terminator for '")
|
||||
<< parentOp->getName() << "'";
|
||||
|
||||
return builder
|
||||
.create<func::ReturnOp>(
|
||||
loc, llvm::map_to_vector(funcOp.getResultTypes(),
|
||||
[&](Type type) {
|
||||
return getUndefValue(loc, builder, type);
|
||||
}))
|
||||
return func::ReturnOp::create(
|
||||
builder, loc,
|
||||
llvm::map_to_vector(
|
||||
funcOp.getResultTypes(),
|
||||
[&](Type type) { return getUndefValue(loc, builder, type); }))
|
||||
.getOperation();
|
||||
}
|
||||
|
||||
|
@ -559,8 +559,8 @@ static Value createGroupReduceOpImpl(OpBuilder &builder, Location loc,
|
||||
builder, loc, builder.getI32Type(),
|
||||
builder.getIntegerAttr(builder.getI32Type(), *clusterSize));
|
||||
|
||||
return builder
|
||||
.create<NonUniformOp>(loc, type, scope, groupOp, arg, clusterSizeValue)
|
||||
return NonUniformOp::create(builder, loc, type, scope, groupOp, arg,
|
||||
clusterSizeValue)
|
||||
.getResult();
|
||||
}
|
||||
|
||||
|
@ -272,14 +272,13 @@ LogicalResult ConvertToLLVMPattern::copyUnrankedDescriptors(
|
||||
|
||||
// Allocate memory, copy, and free the source if necessary.
|
||||
Value memory =
|
||||
toDynamic
|
||||
? builder
|
||||
.create<LLVM::CallOp>(loc, mallocFunc.value(), allocationSize)
|
||||
.getResult()
|
||||
: LLVM::AllocaOp::create(builder, loc, getPtrType(),
|
||||
IntegerType::get(getContext(), 8),
|
||||
allocationSize,
|
||||
/*alignment=*/0);
|
||||
toDynamic ? LLVM::CallOp::create(builder, loc, mallocFunc.value(),
|
||||
allocationSize)
|
||||
.getResult()
|
||||
: LLVM::AllocaOp::create(builder, loc, getPtrType(),
|
||||
IntegerType::get(getContext(), 8),
|
||||
allocationSize,
|
||||
/*alignment=*/0);
|
||||
Value source = desc.memRefDescPtr(builder, loc);
|
||||
LLVM::MemcpyOp::create(builder, loc, memory, source, allocationSize, false);
|
||||
if (!toDynamic)
|
||||
|
@ -35,7 +35,7 @@ static Op getOrDefineGlobal(ModuleOp &moduleOp, const Location loc,
|
||||
if (!(ret = moduleOp.lookupSymbol<Op>(name))) {
|
||||
ConversionPatternRewriter::InsertionGuard guard(rewriter);
|
||||
rewriter.setInsertionPointToStart(moduleOp.getBody());
|
||||
ret = rewriter.template create<Op>(loc, std::forward<Args>(args)...);
|
||||
ret = Op::create(rewriter, loc, std::forward<Args>(args)...);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
@ -575,8 +575,8 @@ private:
|
||||
Value sizePtr = LLVM::GEPOp::create(rewriter, loc, indexPtrTy,
|
||||
getTypeConverter()->getIndexType(),
|
||||
offsetPtr, idxPlusOne);
|
||||
return rewriter
|
||||
.create<LLVM::LoadOp>(loc, getTypeConverter()->getIndexType(), sizePtr)
|
||||
return LLVM::LoadOp::create(rewriter, loc,
|
||||
getTypeConverter()->getIndexType(), sizePtr)
|
||||
.getResult();
|
||||
}
|
||||
|
||||
|
@ -1493,11 +1493,11 @@ public:
|
||||
Value extended;
|
||||
if (op2TypeWidth < dstTypeWidth) {
|
||||
if (isUnsignedIntegerOrVector(op2Type)) {
|
||||
extended = rewriter.template create<LLVM::ZExtOp>(
|
||||
loc, dstType, adaptor.getOperand2());
|
||||
extended =
|
||||
LLVM::ZExtOp::create(rewriter, loc, dstType, adaptor.getOperand2());
|
||||
} else {
|
||||
extended = rewriter.template create<LLVM::SExtOp>(
|
||||
loc, dstType, adaptor.getOperand2());
|
||||
extended =
|
||||
LLVM::SExtOp::create(rewriter, loc, dstType, adaptor.getOperand2());
|
||||
}
|
||||
} else if (op2TypeWidth == dstTypeWidth) {
|
||||
extended = adaptor.getOperand2();
|
||||
@ -1505,8 +1505,8 @@ public:
|
||||
return failure();
|
||||
}
|
||||
|
||||
Value result = rewriter.template create<LLVMOp>(
|
||||
loc, dstType, adaptor.getOperand1(), extended);
|
||||
Value result =
|
||||
LLVMOp::create(rewriter, loc, dstType, adaptor.getOperand1(), extended);
|
||||
rewriter.replaceOp(op, result);
|
||||
return success();
|
||||
}
|
||||
|
@ -177,9 +177,8 @@ struct ConvertShardingOp : public OpConversionPattern<ShardingOp> {
|
||||
auto type = RankedTensorType::get({nSplits, 2}, i64);
|
||||
Value resHaloSizes =
|
||||
haloSizes.empty()
|
||||
? rewriter
|
||||
.create<tensor::EmptyOp>(loc, std::array<int64_t, 2>{0, 0},
|
||||
i64)
|
||||
? tensor::EmptyOp::create(rewriter, loc,
|
||||
std::array<int64_t, 2>{0, 0}, i64)
|
||||
.getResult()
|
||||
: tensor::FromElementsOp::create(rewriter, loc, type, haloSizes)
|
||||
.getResult();
|
||||
@ -306,13 +305,11 @@ public:
|
||||
auto ctx = op.getContext();
|
||||
Value commWorld =
|
||||
mpi::CommWorldOp::create(rewriter, loc, mpi::CommType::get(ctx));
|
||||
auto rank =
|
||||
rewriter
|
||||
.create<mpi::CommRankOp>(
|
||||
loc,
|
||||
TypeRange{mpi::RetvalType::get(ctx), rewriter.getI32Type()},
|
||||
commWorld)
|
||||
.getRank();
|
||||
auto rank = mpi::CommRankOp::create(
|
||||
rewriter, loc,
|
||||
TypeRange{mpi::RetvalType::get(ctx), rewriter.getI32Type()},
|
||||
commWorld)
|
||||
.getRank();
|
||||
rewriter.replaceOpWithNewOp<arith::IndexCastOp>(op, rewriter.getIndexType(),
|
||||
rank);
|
||||
return success();
|
||||
@ -703,10 +700,9 @@ struct ConvertUpdateHaloOp : public OpConversionPattern<UpdateHaloOp> {
|
||||
// subviews need Index values
|
||||
for (auto &sz : haloSizes) {
|
||||
if (auto value = dyn_cast<Value>(sz))
|
||||
sz =
|
||||
rewriter
|
||||
.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), value)
|
||||
.getResult();
|
||||
sz = arith::IndexCastOp::create(rewriter, loc, rewriter.getIndexType(),
|
||||
value)
|
||||
.getResult();
|
||||
}
|
||||
|
||||
// most of the offset/size/stride data is the same for all dims
|
||||
@ -758,9 +754,8 @@ struct ConvertUpdateHaloOp : public OpConversionPattern<UpdateHaloOp> {
|
||||
assert(currHaloDim >= 0 && (size_t)currHaloDim < haloSizes.size() / 2);
|
||||
// Get the linearized ids of the neighbors (down and up) for the
|
||||
// given split
|
||||
auto tmp = rewriter
|
||||
.create<NeighborsLinearIndicesOp>(loc, grid, myMultiIndex,
|
||||
splitAxes)
|
||||
auto tmp = NeighborsLinearIndicesOp::create(rewriter, loc, grid,
|
||||
myMultiIndex, splitAxes)
|
||||
.getResults();
|
||||
// MPI operates on i32...
|
||||
Value neighbourIDs[2] = {
|
||||
|
@ -569,10 +569,9 @@ static Value createLinalgBodyCalculationForElementwiseOp(
|
||||
// to UIToFP.
|
||||
if (srcTy.isUnsignedInteger() && isa<FloatType>(dstTy)) {
|
||||
auto unrealizedCast =
|
||||
rewriter
|
||||
.create<UnrealizedConversionCastOp>(
|
||||
loc, rewriter.getIntegerType(srcTy.getIntOrFloatBitWidth()),
|
||||
args[0])
|
||||
UnrealizedConversionCastOp::create(
|
||||
rewriter, loc,
|
||||
rewriter.getIntegerType(srcTy.getIntOrFloatBitWidth()), args[0])
|
||||
.getResult(0);
|
||||
return arith::UIToFPOp::create(rewriter, loc, resultTypes[0],
|
||||
unrealizedCast);
|
||||
@ -868,14 +867,13 @@ static Value broadcastDynamicDimension(PatternRewriter &rewriter, Location loc,
|
||||
|
||||
// Emit 'linalg.generic' op
|
||||
auto resultTensor =
|
||||
opBuilder
|
||||
.create<linalg::GenericOp>(
|
||||
loc, outputTensor.getType(), operand, outputTensor, affineMaps,
|
||||
getNParallelLoopsAttrs(rank),
|
||||
[&](OpBuilder &opBuilder, Location loc, ValueRange blockArgs) {
|
||||
// Emit 'linalg.yield' op
|
||||
linalg::YieldOp::create(opBuilder, loc, blockArgs.front());
|
||||
})
|
||||
linalg::GenericOp::create(
|
||||
opBuilder, loc, outputTensor.getType(), operand, outputTensor,
|
||||
affineMaps, getNParallelLoopsAttrs(rank),
|
||||
[&](OpBuilder &opBuilder, Location loc, ValueRange blockArgs) {
|
||||
// Emit 'linalg.yield' op
|
||||
linalg::YieldOp::create(opBuilder, loc, blockArgs.front());
|
||||
})
|
||||
.getResult(0);
|
||||
|
||||
// Cast to original operand type if necessary
|
||||
@ -1155,11 +1153,9 @@ static LogicalResult reduceMatchAndRewriteHelper(OpTy op, uint64_t axis,
|
||||
inputs.push_back(input);
|
||||
|
||||
// First fill the output buffer with the init value.
|
||||
auto emptyTensor =
|
||||
rewriter
|
||||
.create<tensor::EmptyOp>(loc, reduceShape, resultTy.getElementType(),
|
||||
dynDims)
|
||||
.getResult();
|
||||
auto emptyTensor = tensor::EmptyOp::create(rewriter, loc, reduceShape,
|
||||
resultTy.getElementType(), dynDims)
|
||||
.getResult();
|
||||
|
||||
auto fillValueAttr = createInitialValueForReduceOp(op, elementTy, rewriter);
|
||||
if (!fillValueAttr)
|
||||
@ -1167,10 +1163,10 @@ static LogicalResult reduceMatchAndRewriteHelper(OpTy op, uint64_t axis,
|
||||
op, "No initial value found for reduction operation");
|
||||
|
||||
auto fillValue = arith::ConstantOp::create(rewriter, loc, fillValueAttr);
|
||||
auto filledTensor = rewriter
|
||||
.create<linalg::FillOp>(loc, ValueRange{fillValue},
|
||||
ValueRange{emptyTensor})
|
||||
.result();
|
||||
auto filledTensor =
|
||||
linalg::FillOp::create(rewriter, loc, ValueRange{fillValue},
|
||||
ValueRange{emptyTensor})
|
||||
.result();
|
||||
outputs.push_back(filledTensor);
|
||||
|
||||
bool isNanIgnoreMode = false;
|
||||
@ -1186,14 +1182,12 @@ static LogicalResult reduceMatchAndRewriteHelper(OpTy op, uint64_t axis,
|
||||
auto trueAttr = rewriter.getBoolAttr(true);
|
||||
auto trueValue = arith::ConstantOp::create(rewriter, loc, trueAttr);
|
||||
auto emptyBoolTensor =
|
||||
rewriter
|
||||
.create<tensor::EmptyOp>(loc, reduceShape, trueValue.getType(),
|
||||
dynDims)
|
||||
tensor::EmptyOp::create(rewriter, loc, reduceShape,
|
||||
trueValue.getType(), dynDims)
|
||||
.getResult();
|
||||
auto allResultsNaNTensor =
|
||||
rewriter
|
||||
.create<linalg::FillOp>(loc, ValueRange{trueValue},
|
||||
ValueRange{emptyBoolTensor})
|
||||
linalg::FillOp::create(rewriter, loc, ValueRange{trueValue},
|
||||
ValueRange{emptyBoolTensor})
|
||||
.result();
|
||||
// Note that because the linalg::ReduceOp has two variadic arguments
|
||||
// (inputs and outputs) and it has the SameVariadicOperandSize trait we
|
||||
@ -1261,22 +1255,19 @@ static LogicalResult reduceMatchAndRewriteHelper(OpTy op, uint64_t axis,
|
||||
APFloat::getNaN(cast<FloatType>(elementTy).getFloatSemantics(), false));
|
||||
auto nanValue = arith::ConstantOp::create(rewriter, loc, nanValueAttr);
|
||||
auto emptyNanTensor =
|
||||
rewriter
|
||||
.create<tensor::EmptyOp>(loc, reduceShape,
|
||||
resultTy.getElementType(), dynDims)
|
||||
tensor::EmptyOp::create(rewriter, loc, reduceShape,
|
||||
resultTy.getElementType(), dynDims)
|
||||
.getResult();
|
||||
auto nanFilledTensor =
|
||||
rewriter
|
||||
.create<linalg::FillOp>(loc, ValueRange{nanValue},
|
||||
ValueRange{emptyNanTensor})
|
||||
linalg::FillOp::create(rewriter, loc, ValueRange{nanValue},
|
||||
ValueRange{emptyNanTensor})
|
||||
.result();
|
||||
|
||||
// Create an empty tensor, non need to fill this since it will be
|
||||
// overwritten by the select.
|
||||
auto finalEmptyTensor =
|
||||
rewriter
|
||||
.create<tensor::EmptyOp>(loc, reduceShape,
|
||||
resultTy.getElementType(), dynDims)
|
||||
tensor::EmptyOp::create(rewriter, loc, reduceShape,
|
||||
resultTy.getElementType(), dynDims)
|
||||
.getResult();
|
||||
|
||||
// Do a selection between the tensors akin to:
|
||||
@ -1503,12 +1494,11 @@ public:
|
||||
Value shift = shiftConstant ? shiftConstant : blockArgs[shiftArg];
|
||||
|
||||
if (valueTy.isUnsignedInteger()) {
|
||||
value = nestedBuilder
|
||||
.create<UnrealizedConversionCastOp>(
|
||||
nestedLoc,
|
||||
nestedBuilder.getIntegerType(
|
||||
valueTy.getIntOrFloatBitWidth()),
|
||||
value)
|
||||
value = UnrealizedConversionCastOp::create(
|
||||
nestedBuilder, nestedLoc,
|
||||
nestedBuilder.getIntegerType(
|
||||
valueTy.getIntOrFloatBitWidth()),
|
||||
value)
|
||||
.getResult(0);
|
||||
}
|
||||
if (valueTy.getIntOrFloatBitWidth() < 32) {
|
||||
@ -1557,9 +1547,8 @@ public:
|
||||
}
|
||||
|
||||
if (outIntType.isUnsignedInteger()) {
|
||||
value = nestedBuilder
|
||||
.create<UnrealizedConversionCastOp>(nestedLoc,
|
||||
outIntType, value)
|
||||
value = UnrealizedConversionCastOp::create(nestedBuilder, nestedLoc,
|
||||
outIntType, value)
|
||||
.getResult(0);
|
||||
}
|
||||
linalg::YieldOp::create(nestedBuilder, loc, value);
|
||||
@ -2095,10 +2084,9 @@ public:
|
||||
Value axisDimSize = tensor::DimOp::create(rewriter, loc, input, axis);
|
||||
|
||||
// First fill the output buffer with the init value.
|
||||
auto emptyTensor = rewriter
|
||||
.create<tensor::EmptyOp>(loc, inputTy.getShape(),
|
||||
inputTy.getElementType(),
|
||||
ArrayRef<Value>({dynDims}))
|
||||
auto emptyTensor = tensor::EmptyOp::create(
|
||||
rewriter, loc, inputTy.getShape(),
|
||||
inputTy.getElementType(), ArrayRef<Value>({dynDims}))
|
||||
.getResult();
|
||||
SmallVector<AffineMap, 2> affineMaps = {
|
||||
rewriter.getMultiDimIdentityMap(resultTy.getRank())};
|
||||
@ -2241,23 +2229,22 @@ public:
|
||||
}
|
||||
|
||||
// First fill the output buffer for the index.
|
||||
auto emptyTensorIdx = rewriter
|
||||
.create<tensor::EmptyOp>(loc, resultTy.getShape(),
|
||||
outElementTy, dynDims)
|
||||
.getResult();
|
||||
auto emptyTensorIdx =
|
||||
tensor::EmptyOp::create(rewriter, loc, resultTy.getShape(),
|
||||
outElementTy, dynDims)
|
||||
.getResult();
|
||||
auto fillValueIdx = arith::ConstantOp::create(
|
||||
rewriter, loc, rewriter.getIntegerAttr(outElementTy, 0));
|
||||
auto filledTensorIdx =
|
||||
rewriter
|
||||
.create<linalg::FillOp>(loc, ValueRange{fillValueIdx},
|
||||
ValueRange{emptyTensorIdx})
|
||||
linalg::FillOp::create(rewriter, loc, ValueRange{fillValueIdx},
|
||||
ValueRange{emptyTensorIdx})
|
||||
.result();
|
||||
|
||||
// Second fill the output buffer for the running max.
|
||||
auto emptyTensorMax = rewriter
|
||||
.create<tensor::EmptyOp>(loc, resultTy.getShape(),
|
||||
inElementTy, dynDims)
|
||||
.getResult();
|
||||
auto emptyTensorMax =
|
||||
tensor::EmptyOp::create(rewriter, loc, resultTy.getShape(), inElementTy,
|
||||
dynDims)
|
||||
.getResult();
|
||||
auto fillValueMaxAttr =
|
||||
createInitialValueForReduceOp(argmaxOp, inElementTy, rewriter);
|
||||
|
||||
@ -2268,9 +2255,8 @@ public:
|
||||
auto fillValueMax =
|
||||
arith::ConstantOp::create(rewriter, loc, fillValueMaxAttr);
|
||||
auto filledTensorMax =
|
||||
rewriter
|
||||
.create<linalg::FillOp>(loc, ValueRange{fillValueMax},
|
||||
ValueRange{emptyTensorMax})
|
||||
linalg::FillOp::create(rewriter, loc, ValueRange{fillValueMax},
|
||||
ValueRange{emptyTensorMax})
|
||||
.result();
|
||||
|
||||
// We need to reduce along the arg-max axis, with parallel operations along
|
||||
@ -2371,9 +2357,8 @@ public:
|
||||
|
||||
auto loc = op.getLoc();
|
||||
auto emptyTensor =
|
||||
rewriter
|
||||
.create<tensor::EmptyOp>(loc, resultTy.getShape(), resultElementTy,
|
||||
dynamicDims)
|
||||
tensor::EmptyOp::create(rewriter, loc, resultTy.getShape(),
|
||||
resultElementTy, dynamicDims)
|
||||
.getResult();
|
||||
|
||||
SmallVector<AffineMap, 2> affineMaps = {
|
||||
@ -2448,10 +2433,10 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
auto emptyTensor = rewriter
|
||||
.create<tensor::EmptyOp>(loc, resultTy.getShape(),
|
||||
resultElementTy, dynDims)
|
||||
.getResult();
|
||||
auto emptyTensor =
|
||||
tensor::EmptyOp::create(rewriter, loc, resultTy.getShape(),
|
||||
resultElementTy, dynDims)
|
||||
.getResult();
|
||||
|
||||
SmallVector<AffineMap, 2> affineMaps = {
|
||||
rewriter.getMultiDimIdentityMap(resultTy.getRank()),
|
||||
@ -2585,10 +2570,10 @@ struct RFFT2dConverter final : public OpRewritePattern<RFFT2dOp> {
|
||||
tensor::EmptyOp::create(rewriter, loc, type, dynamicSizes);
|
||||
auto fillValueAttr = rewriter.getZeroAttr(type.getElementType());
|
||||
auto fillValue = arith::ConstantOp::create(rewriter, loc, fillValueAttr);
|
||||
auto filledTensor = rewriter
|
||||
.create<linalg::FillOp>(loc, ValueRange{fillValue},
|
||||
ValueRange{emptyTensor})
|
||||
.result();
|
||||
auto filledTensor =
|
||||
linalg::FillOp::create(rewriter, loc, ValueRange{fillValue},
|
||||
ValueRange{emptyTensor})
|
||||
.result();
|
||||
return filledTensor;
|
||||
}
|
||||
|
||||
|
@ -64,19 +64,20 @@ linalgIntBroadcastExtSIAdd(PatternRewriter &rewriter, Location loc, Value bias,
|
||||
Value conv, Value result,
|
||||
ArrayRef<AffineMap> indexingMaps) {
|
||||
ShapedType resultTy = cast<ShapedType>(conv.getType());
|
||||
return rewriter
|
||||
.create<linalg::GenericOp>(
|
||||
loc, resultTy, ValueRange({bias, conv}), result, indexingMaps,
|
||||
getNParallelLoopsAttrs(resultTy.getRank()),
|
||||
[](OpBuilder &builder, Location loc, ValueRange args) {
|
||||
Value biasVal = args[0];
|
||||
Type resType = args[1].getType();
|
||||
if (resType != biasVal.getType()) {
|
||||
biasVal = arith::ExtSIOp::create(builder, loc, resType, biasVal);
|
||||
}
|
||||
Value added = arith::AddIOp::create(builder, loc, biasVal, args[1]);
|
||||
linalg::YieldOp::create(builder, loc, added);
|
||||
})
|
||||
return linalg::GenericOp::create(
|
||||
rewriter, loc, resultTy, ValueRange({bias, conv}), result,
|
||||
indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()),
|
||||
[](OpBuilder &builder, Location loc, ValueRange args) {
|
||||
Value biasVal = args[0];
|
||||
Type resType = args[1].getType();
|
||||
if (resType != biasVal.getType()) {
|
||||
biasVal =
|
||||
arith::ExtSIOp::create(builder, loc, resType, biasVal);
|
||||
}
|
||||
Value added =
|
||||
arith::AddIOp::create(builder, loc, biasVal, args[1]);
|
||||
linalg::YieldOp::create(builder, loc, added);
|
||||
})
|
||||
.getResult(0);
|
||||
}
|
||||
|
||||
@ -124,23 +125,23 @@ static mlir::Value linalgBroadcastAndMaybeExt(PatternRewriter &rewriter,
|
||||
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
|
||||
|
||||
// Build the broadcast-like operation as a linalg.generic.
|
||||
return rewriter
|
||||
.create<linalg::GenericOp>(
|
||||
loc, resultTy, ValueRange({source}), result, indexingMaps,
|
||||
getNParallelLoopsAttrs(resultTy.getRank()),
|
||||
[&resultTy](OpBuilder &builder, Location loc, ValueRange args) {
|
||||
Value biasVal = args[0];
|
||||
Type resType = args[1].getType();
|
||||
if (resType != biasVal.getType()) {
|
||||
biasVal =
|
||||
resultTy.getElementType().isFloat()
|
||||
? arith::ExtFOp::create(builder, loc, resType, biasVal)
|
||||
.getResult()
|
||||
: arith::ExtSIOp::create(builder, loc, resType, biasVal)
|
||||
.getResult();
|
||||
}
|
||||
linalg::YieldOp::create(builder, loc, biasVal);
|
||||
})
|
||||
return linalg::GenericOp::create(
|
||||
rewriter, loc, resultTy, ValueRange({source}), result,
|
||||
indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()),
|
||||
[&resultTy](OpBuilder &builder, Location loc, ValueRange args) {
|
||||
Value biasVal = args[0];
|
||||
Type resType = args[1].getType();
|
||||
if (resType != biasVal.getType()) {
|
||||
biasVal =
|
||||
resultTy.getElementType().isFloat()
|
||||
? arith::ExtFOp::create(builder, loc, resType, biasVal)
|
||||
.getResult()
|
||||
: arith::ExtSIOp::create(builder, loc, resType,
|
||||
biasVal)
|
||||
.getResult();
|
||||
}
|
||||
linalg::YieldOp::create(builder, loc, biasVal);
|
||||
})
|
||||
.getResult(0);
|
||||
}
|
||||
|
||||
@ -397,21 +398,19 @@ public:
|
||||
auto iZpVal = arith::ConstantOp::create(rewriter, loc, iZp);
|
||||
auto kZpVal = arith::ConstantOp::create(rewriter, loc, kZp);
|
||||
|
||||
Value conv =
|
||||
rewriter
|
||||
.create<LinalgConvQOp>(
|
||||
loc, resultTy, ValueRange{input, weight, iZpVal, kZpVal},
|
||||
ValueRange{broadcastBias}, strideAttr, dilationAttr)
|
||||
->getResult(0);
|
||||
Value conv = LinalgConvQOp::create(
|
||||
rewriter, loc, resultTy,
|
||||
ValueRange{input, weight, iZpVal, kZpVal},
|
||||
ValueRange{broadcastBias}, strideAttr, dilationAttr)
|
||||
->getResult(0);
|
||||
|
||||
rewriter.replaceOp(op, conv);
|
||||
return success();
|
||||
}
|
||||
|
||||
Value conv = rewriter
|
||||
.create<LinalgConvOp>(
|
||||
loc, accTy, ValueRange{input, weight},
|
||||
ValueRange{broadcastBias}, strideAttr, dilationAttr)
|
||||
Value conv = LinalgConvOp::create(
|
||||
rewriter, loc, accTy, ValueRange{input, weight},
|
||||
ValueRange{broadcastBias}, strideAttr, dilationAttr)
|
||||
->getResult(0);
|
||||
|
||||
// We may need to truncate back to the result type if the accumulator was
|
||||
@ -529,9 +528,8 @@ public:
|
||||
Value emptyTensor = tensor::EmptyOp::create(
|
||||
rewriter, loc, linalgConvTy.getShape(), accETy, filteredDims);
|
||||
Value zero = arith::ConstantOp::create(rewriter, loc, resultZeroAttr);
|
||||
Value zeroTensor = rewriter
|
||||
.create<linalg::FillOp>(loc, ValueRange{zero},
|
||||
ValueRange{emptyTensor})
|
||||
Value zeroTensor = linalg::FillOp::create(rewriter, loc, ValueRange{zero},
|
||||
ValueRange{emptyTensor})
|
||||
.result();
|
||||
|
||||
Value biasEmptyTensor = tensor::EmptyOp::create(
|
||||
@ -544,10 +542,9 @@ public:
|
||||
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
|
||||
|
||||
if (hasNullZps) {
|
||||
Value conv = rewriter
|
||||
.create<linalg::DepthwiseConv2DNhwcHwcmOp>(
|
||||
loc, linalgConvTy, ValueRange{input, weight},
|
||||
ValueRange{zeroTensor}, strideAttr, dilationAttr)
|
||||
Value conv = linalg::DepthwiseConv2DNhwcHwcmOp::create(
|
||||
rewriter, loc, linalgConvTy, ValueRange{input, weight},
|
||||
ValueRange{zeroTensor}, strideAttr, dilationAttr)
|
||||
.getResult(0);
|
||||
|
||||
// We may need to truncate back to the result type if the accumulator was
|
||||
@ -565,22 +562,20 @@ public:
|
||||
rewriter, loc, resultTy, conv, reassociationMap);
|
||||
|
||||
Value result =
|
||||
rewriter
|
||||
.create<linalg::GenericOp>(
|
||||
loc, resultTy, ValueRange({bias, convReshape}),
|
||||
biasEmptyTensor, indexingMaps,
|
||||
getNParallelLoopsAttrs(resultRank),
|
||||
[&](OpBuilder &nestedBuilder, Location nestedLoc,
|
||||
ValueRange args) {
|
||||
Value added;
|
||||
if (llvm::isa<FloatType>(inputETy))
|
||||
added = arith::AddFOp::create(nestedBuilder, loc, args[0],
|
||||
args[1]);
|
||||
else
|
||||
added = arith::AddIOp::create(nestedBuilder, loc, args[0],
|
||||
args[1]);
|
||||
linalg::YieldOp::create(nestedBuilder, nestedLoc, added);
|
||||
})
|
||||
linalg::GenericOp::create(
|
||||
rewriter, loc, resultTy, ValueRange({bias, convReshape}),
|
||||
biasEmptyTensor, indexingMaps, getNParallelLoopsAttrs(resultRank),
|
||||
[&](OpBuilder &nestedBuilder, Location nestedLoc,
|
||||
ValueRange args) {
|
||||
Value added;
|
||||
if (llvm::isa<FloatType>(inputETy))
|
||||
added = arith::AddFOp::create(nestedBuilder, loc, args[0],
|
||||
args[1]);
|
||||
else
|
||||
added = arith::AddIOp::create(nestedBuilder, loc, args[0],
|
||||
args[1]);
|
||||
linalg::YieldOp::create(nestedBuilder, nestedLoc, added);
|
||||
})
|
||||
.getResult(0);
|
||||
rewriter.replaceOp(op, result);
|
||||
} else {
|
||||
@ -588,12 +583,11 @@ public:
|
||||
IntegerAttr wZp = rewriter.getI32IntegerAttr(weightZpVal);
|
||||
auto iZpVal = arith::ConstantOp::create(rewriter, loc, iZp);
|
||||
auto kZpVal = arith::ConstantOp::create(rewriter, loc, wZp);
|
||||
Value conv =
|
||||
rewriter
|
||||
.create<linalg::DepthwiseConv2DNhwcHwcmQOp>(
|
||||
loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal},
|
||||
ValueRange{zeroTensor}, strideAttr, dilationAttr)
|
||||
.getResult(0);
|
||||
Value conv = linalg::DepthwiseConv2DNhwcHwcmQOp::create(
|
||||
rewriter, loc, linalgConvTy,
|
||||
ValueRange{input, weight, iZpVal, kZpVal},
|
||||
ValueRange{zeroTensor}, strideAttr, dilationAttr)
|
||||
.getResult(0);
|
||||
SmallVector<ReassociationExprs, 4> reassociationMap;
|
||||
createDepthwiseConvCollapseMap(resultRank, reassociationMap, rewriter);
|
||||
Value convReshape = tensor::CollapseShapeOp::create(
|
||||
@ -639,9 +633,8 @@ public:
|
||||
auto emptyTensor =
|
||||
tensor::EmptyOp::create(rewriter, loc, outputTy.getShape(),
|
||||
outputTy.getElementType(), filteredDims);
|
||||
Value zeroTensor = rewriter
|
||||
.create<linalg::FillOp>(loc, ValueRange{zero},
|
||||
ValueRange{emptyTensor})
|
||||
Value zeroTensor = linalg::FillOp::create(rewriter, loc, ValueRange{zero},
|
||||
ValueRange{emptyTensor})
|
||||
.result();
|
||||
|
||||
FailureOr<int64_t> maybeAZp = op.getAZeroPoint();
|
||||
@ -910,20 +903,18 @@ public:
|
||||
rewriter, loc, accTy.getShape(), accETy, dynamicDims);
|
||||
|
||||
Value filledEmptyTensor =
|
||||
rewriter
|
||||
.create<linalg::FillOp>(loc, ValueRange{initialValue},
|
||||
ValueRange{poolEmptyTensor})
|
||||
linalg::FillOp::create(rewriter, loc, ValueRange{initialValue},
|
||||
ValueRange{poolEmptyTensor})
|
||||
.result();
|
||||
|
||||
Value fakeWindowDims =
|
||||
tensor::EmptyOp::create(rewriter, loc, kernel, accETy);
|
||||
|
||||
// Sum across the pooled region.
|
||||
Value poolingOp = rewriter
|
||||
.create<linalg::PoolingNhwcSumOp>(
|
||||
loc, ArrayRef<Type>{accTy},
|
||||
ValueRange{paddedInput, fakeWindowDims},
|
||||
filledEmptyTensor, strideAttr, dilationAttr)
|
||||
Value poolingOp = linalg::PoolingNhwcSumOp::create(
|
||||
rewriter, loc, ArrayRef<Type>{accTy},
|
||||
ValueRange{paddedInput, fakeWindowDims},
|
||||
filledEmptyTensor, strideAttr, dilationAttr)
|
||||
.getResult(0);
|
||||
|
||||
// Normalize the summed value by the number of elements grouped in each
|
||||
@ -1050,10 +1041,9 @@ public:
|
||||
Value shift = arith::AddIOp::create(rewriter, loc, k8, thirty8);
|
||||
|
||||
auto scaled =
|
||||
rewriter
|
||||
.create<tosa::ApplyScaleOp>(
|
||||
loc, rewriter.getI32Type(), poolVal, multiplier, shift,
|
||||
rewriter.getStringAttr("SINGLE_ROUND"))
|
||||
tosa::ApplyScaleOp::create(
|
||||
rewriter, loc, rewriter.getI32Type(), poolVal, multiplier,
|
||||
shift, rewriter.getStringAttr("SINGLE_ROUND"))
|
||||
.getResult();
|
||||
|
||||
// If we have quantization information we need to apply output
|
||||
|
@ -482,14 +482,12 @@ struct CombineTransferReadOpTranspose final
|
||||
permutationMap.compose(transferReadOp.getPermutationMap());
|
||||
|
||||
auto loc = op.getLoc();
|
||||
Value result =
|
||||
rewriter
|
||||
.create<vector::TransferReadOp>(
|
||||
loc, resultType, transferReadOp.getBase(),
|
||||
transferReadOp.getIndices(), AffineMapAttr::get(newMap),
|
||||
transferReadOp.getPadding(), transferReadOp.getMask(),
|
||||
transferReadOp.getInBoundsAttr())
|
||||
.getResult();
|
||||
Value result = vector::TransferReadOp::create(
|
||||
rewriter, loc, resultType, transferReadOp.getBase(),
|
||||
transferReadOp.getIndices(), AffineMapAttr::get(newMap),
|
||||
transferReadOp.getPadding(), transferReadOp.getMask(),
|
||||
transferReadOp.getInBoundsAttr())
|
||||
.getResult();
|
||||
|
||||
// Fuse through the integer extend op.
|
||||
if (extOp) {
|
||||
|
@ -142,6 +142,7 @@ static LogicalResult convertInstructionImpl(OpBuilder &odsBuilder,
|
||||
// TODO: Implement the `convertInstruction` hooks in the
|
||||
// `LLVMDialectLLVMIRImportInterface` and move the following include there.
|
||||
#include "mlir/Dialect/LLVMIR/LLVMOpFromLLVMIRConversions.inc"
|
||||
|
||||
return failure();
|
||||
}
|
||||
|
||||
@ -1626,12 +1627,11 @@ FailureOr<Value> ModuleImport::convertConstant(llvm::Constant *constant) {
|
||||
// Convert dso_local_equivalent.
|
||||
if (auto *dsoLocalEquivalent = dyn_cast<llvm::DSOLocalEquivalent>(constant)) {
|
||||
Type type = convertType(dsoLocalEquivalent->getType());
|
||||
return builder
|
||||
.create<DSOLocalEquivalentOp>(
|
||||
loc, type,
|
||||
FlatSymbolRefAttr::get(
|
||||
builder.getContext(),
|
||||
dsoLocalEquivalent->getGlobalValue()->getName()))
|
||||
return DSOLocalEquivalentOp::create(
|
||||
builder, loc, type,
|
||||
FlatSymbolRefAttr::get(
|
||||
builder.getContext(),
|
||||
dsoLocalEquivalent->getGlobalValue()->getName()))
|
||||
.getResult();
|
||||
}
|
||||
|
||||
@ -1736,9 +1736,9 @@ FailureOr<Value> ModuleImport::convertConstant(llvm::Constant *constant) {
|
||||
FlatSymbolRefAttr::get(context, blockAddr->getFunction()->getName());
|
||||
auto blockTag =
|
||||
BlockTagAttr::get(context, blockAddr->getBasicBlock()->getNumber());
|
||||
return builder
|
||||
.create<BlockAddressOp>(loc, convertType(blockAddr->getType()),
|
||||
BlockAddressAttr::get(context, fnSym, blockTag))
|
||||
return BlockAddressOp::create(
|
||||
builder, loc, convertType(blockAddr->getType()),
|
||||
BlockAddressAttr::get(context, fnSym, blockTag))
|
||||
.getRes();
|
||||
}
|
||||
|
||||
@ -2228,17 +2228,16 @@ LogicalResult ModuleImport::convertInstruction(llvm::Instruction *inst) {
|
||||
if (!resultTy)
|
||||
return failure();
|
||||
ArrayAttr operandAttrs = convertAsmInlineOperandAttrs(*callInst);
|
||||
return builder
|
||||
.create<InlineAsmOp>(
|
||||
loc, resultTy, *operands,
|
||||
builder.getStringAttr(asmI->getAsmString()),
|
||||
builder.getStringAttr(asmI->getConstraintString()),
|
||||
asmI->hasSideEffects(), asmI->isAlignStack(),
|
||||
convertTailCallKindFromLLVM(callInst->getTailCallKind()),
|
||||
AsmDialectAttr::get(
|
||||
mlirModule.getContext(),
|
||||
convertAsmDialectFromLLVM(asmI->getDialect())),
|
||||
operandAttrs)
|
||||
return InlineAsmOp::create(
|
||||
builder, loc, resultTy, *operands,
|
||||
builder.getStringAttr(asmI->getAsmString()),
|
||||
builder.getStringAttr(asmI->getConstraintString()),
|
||||
asmI->hasSideEffects(), asmI->isAlignStack(),
|
||||
convertTailCallKindFromLLVM(callInst->getTailCallKind()),
|
||||
AsmDialectAttr::get(
|
||||
mlirModule.getContext(),
|
||||
convertAsmDialectFromLLVM(asmI->getDialect())),
|
||||
operandAttrs)
|
||||
.getOperation();
|
||||
}
|
||||
bool isIncompatibleCall;
|
||||
|
@ -72,15 +72,14 @@ struct TestReshardingRewritePattern : OpRewritePattern<ShardOp> {
|
||||
ShapedType sourceShardShape =
|
||||
shardShapedType(op.getResult().getType(), grid, op.getSharding());
|
||||
TypedValue<ShapedType> sourceShard = cast<TypedValue<ShapedType>>(
|
||||
builder
|
||||
.create<UnrealizedConversionCastOp>(sourceShardShape, op.getSrc())
|
||||
UnrealizedConversionCastOp::create(builder, sourceShardShape,
|
||||
op.getSrc())
|
||||
->getResult(0));
|
||||
TypedValue<ShapedType> targetShard =
|
||||
reshard(builder, grid, op, targetShardOp, sourceShard);
|
||||
Value newTargetUnsharded =
|
||||
builder
|
||||
.create<UnrealizedConversionCastOp>(
|
||||
targetShardOp.getResult().getType(), targetShard)
|
||||
UnrealizedConversionCastOp::create(
|
||||
builder, targetShardOp.getResult().getType(), targetShard)
|
||||
->getResult(0);
|
||||
rewriter.replaceAllUsesWith(targetShardOp.getResult(),
|
||||
newTargetUnsharded);
|
||||
|
@ -1007,9 +1007,8 @@ struct TestPassthroughInvalidOp : public ConversionPattern {
|
||||
// This is a 1:N replacement. Insert a test.cast op. (That's what the
|
||||
// argument materialization used to do.)
|
||||
flattened.push_back(
|
||||
rewriter
|
||||
.create<TestCastOp>(op->getLoc(),
|
||||
op->getOperand(it.index()).getType(), range)
|
||||
TestCastOp::create(rewriter, op->getLoc(),
|
||||
op->getOperand(it.index()).getType(), range)
|
||||
.getResult());
|
||||
}
|
||||
rewriter.replaceOpWithNewOp<TestValidOp>(op, TypeRange(), flattened,
|
||||
|
@ -569,10 +569,9 @@ static Value warpReduction(Location loc, OpBuilder &builder, Value input,
|
||||
Value laneVal = vector::ReductionOp::create(builder, loc, kind, input);
|
||||
// Parallel reduction using butterfly shuffles.
|
||||
for (uint64_t i = 1; i < size; i <<= 1) {
|
||||
Value shuffled = builder
|
||||
.create<gpu::ShuffleOp>(loc, laneVal, i,
|
||||
/*width=*/size,
|
||||
/*mode=*/gpu::ShuffleMode::XOR)
|
||||
Value shuffled = gpu::ShuffleOp::create(builder, loc, laneVal, i,
|
||||
/*width=*/size,
|
||||
/*mode=*/gpu::ShuffleMode::XOR)
|
||||
.getShuffleResult();
|
||||
laneVal = makeArithReduction(builder, loc, kind, laneVal, shuffled);
|
||||
}
|
||||
@ -650,9 +649,8 @@ struct TestVectorDistribution
|
||||
arith::IndexCastOp::create(builder, loc, i32Type, srcIdx);
|
||||
Value warpSzI32 = arith::ConstantOp::create(
|
||||
builder, loc, builder.getIntegerAttr(i32Type, warpSz));
|
||||
Value result = builder
|
||||
.create<gpu::ShuffleOp>(loc, val, srcIdxI32, warpSzI32,
|
||||
gpu::ShuffleMode::IDX)
|
||||
Value result = gpu::ShuffleOp::create(builder, loc, val, srcIdxI32,
|
||||
warpSzI32, gpu::ShuffleMode::IDX)
|
||||
.getResult(0);
|
||||
return result;
|
||||
};
|
||||
|
Loading…
x
Reference in New Issue
Block a user