[flang][fir] Lower do concurrent loop nests to fir.do_concurrent (#137928)

Adds support for lowering `do concurrent` nests from PFT to the new
`fir.do_concurrent` MLIR op as well as its special terminator
`fir.do_concurrent.loop` which models the actual loop nest.

To that end, this PR emits the allocations for the iteration variables
within the block of the `fir.do_concurrent` op and creates a region for
the `fir.do_concurrent.loop` op that accepts arguments equal in number
to the number of the input `do concurrent` iteration ranges.

For example, given the following input:
```fortran
   do concurrent(i=1:10, j=11:20)
   end do
```
the changes in this PR emit the following MLIR:
```mlir
    fir.do_concurrent {
      %22 = fir.alloca i32 {bindc_name = "i"}
      %23:2 = hlfir.declare %22 {uniq_name = "_QFsub1Ei"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
      %24 = fir.alloca i32 {bindc_name = "j"}
      %25:2 = hlfir.declare %24 {uniq_name = "_QFsub1Ej"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
      fir.do_concurrent.loop (%arg1, %arg2) = (%18, %20) to (%19, %21) step (%c1, %c1_0) {
        %26 = fir.convert %arg1 : (index) -> i32
        fir.store %26 to %23#0 : !fir.ref<i32>
        %27 = fir.convert %arg2 : (index) -> i32
        fir.store %27 to %25#0 : !fir.ref<i32>
      }
    }
```
This commit is contained in:
Kareem Ergawy 2025-05-07 12:52:25 +02:00 committed by GitHub
parent c3ce5684a8
commit 2fb288d4b8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 209 additions and 131 deletions

View File

@ -94,10 +94,11 @@ struct IncrementLoopInfo {
template <typename T>
explicit IncrementLoopInfo(Fortran::semantics::Symbol &sym, const T &lower,
const T &upper, const std::optional<T> &step,
bool isUnordered = false)
bool isConcurrent = false)
: loopVariableSym{&sym}, lowerExpr{Fortran::semantics::GetExpr(lower)},
upperExpr{Fortran::semantics::GetExpr(upper)},
stepExpr{Fortran::semantics::GetExpr(step)}, isUnordered{isUnordered} {}
stepExpr{Fortran::semantics::GetExpr(step)},
isConcurrent{isConcurrent} {}
IncrementLoopInfo(IncrementLoopInfo &&) = default;
IncrementLoopInfo &operator=(IncrementLoopInfo &&x) = default;
@ -120,7 +121,7 @@ struct IncrementLoopInfo {
const Fortran::lower::SomeExpr *upperExpr;
const Fortran::lower::SomeExpr *stepExpr;
const Fortran::lower::SomeExpr *maskExpr = nullptr;
bool isUnordered; // do concurrent, forall
bool isConcurrent;
llvm::SmallVector<const Fortran::semantics::Symbol *> localSymList;
llvm::SmallVector<const Fortran::semantics::Symbol *> localInitSymList;
llvm::SmallVector<
@ -130,7 +131,7 @@ struct IncrementLoopInfo {
mlir::Value loopVariable = nullptr;
// Data members for structured loops.
fir::DoLoopOp doLoop = nullptr;
mlir::Operation *loopOp = nullptr;
// Data members for unstructured loops.
bool hasRealControl = false;
@ -1981,7 +1982,7 @@ private:
llvm_unreachable("illegal reduction operator");
}
/// Collect DO CONCURRENT or FORALL loop control information.
/// Collect DO CONCURRENT loop control information.
IncrementLoopNestInfo getConcurrentControl(
const Fortran::parser::ConcurrentHeader &header,
const std::list<Fortran::parser::LocalitySpec> &localityList = {}) {
@ -2292,8 +2293,14 @@ private:
mlir::LLVM::LoopAnnotationAttr la = mlir::LLVM::LoopAnnotationAttr::get(
builder->getContext(), {}, /*vectorize=*/va, {}, /*unroll*/ ua,
/*unroll_and_jam*/ uja, {}, {}, {}, {}, {}, {}, {}, {}, {}, {});
if (has_attrs)
info.doLoop.setLoopAnnotationAttr(la);
if (has_attrs) {
if (auto loopOp = mlir::dyn_cast<fir::DoLoopOp>(info.loopOp))
loopOp.setLoopAnnotationAttr(la);
if (auto doConcurrentOp =
mlir::dyn_cast<fir::DoConcurrentLoopOp>(info.loopOp))
doConcurrentOp.setLoopAnnotationAttr(la);
}
}
/// Generate FIR to begin a structured or unstructured increment loop nest.
@ -2302,96 +2309,77 @@ private:
llvm::SmallVectorImpl<const Fortran::parser::CompilerDirective *> &dirs) {
assert(!incrementLoopNestInfo.empty() && "empty loop nest");
mlir::Location loc = toLocation();
mlir::Operation *boundsAndStepIP = nullptr;
mlir::arith::IntegerOverflowFlags iofBackup{};
llvm::SmallVector<mlir::Value> nestLBs;
llvm::SmallVector<mlir::Value> nestUBs;
llvm::SmallVector<mlir::Value> nestSts;
llvm::SmallVector<mlir::Value> nestReduceOperands;
llvm::SmallVector<mlir::Attribute> nestReduceAttrs;
bool genDoConcurrent = false;
for (IncrementLoopInfo &info : incrementLoopNestInfo) {
mlir::Value lowerValue;
mlir::Value upperValue;
mlir::Value stepValue;
{
mlir::OpBuilder::InsertionGuard guard(*builder);
// Set the IP before the first loop in the nest so that all nest bounds
// and step values are created outside the nest.
if (boundsAndStepIP)
builder->setInsertionPointAfter(boundsAndStepIP);
genDoConcurrent = info.isStructured() && info.isConcurrent;
if (!genDoConcurrent)
info.loopVariable = genLoopVariableAddress(loc, *info.loopVariableSym,
info.isUnordered);
if (!getLoweringOptions().getIntegerWrapAround()) {
iofBackup = builder->getIntegerOverflowFlags();
builder->setIntegerOverflowFlags(
mlir::arith::IntegerOverflowFlags::nsw);
}
lowerValue = genControlValue(info.lowerExpr, info);
upperValue = genControlValue(info.upperExpr, info);
bool isConst = true;
stepValue = genControlValue(info.stepExpr, info,
info.isStructured() ? nullptr : &isConst);
if (!getLoweringOptions().getIntegerWrapAround())
builder->setIntegerOverflowFlags(iofBackup);
boundsAndStepIP = stepValue.getDefiningOp();
info.isConcurrent);
// Use a temp variable for unstructured loops with non-const step.
if (!isConst) {
info.stepVariable =
builder->createTemporary(loc, stepValue.getType());
boundsAndStepIP =
builder->create<fir::StoreOp>(loc, stepValue, info.stepVariable);
}
if (!getLoweringOptions().getIntegerWrapAround()) {
iofBackup = builder->getIntegerOverflowFlags();
builder->setIntegerOverflowFlags(
mlir::arith::IntegerOverflowFlags::nsw);
}
nestLBs.push_back(genControlValue(info.lowerExpr, info));
nestUBs.push_back(genControlValue(info.upperExpr, info));
bool isConst = true;
nestSts.push_back(genControlValue(
info.stepExpr, info, info.isStructured() ? nullptr : &isConst));
if (!getLoweringOptions().getIntegerWrapAround())
builder->setIntegerOverflowFlags(iofBackup);
// Use a temp variable for unstructured loops with non-const step.
if (!isConst) {
mlir::Value stepValue = nestSts.back();
info.stepVariable = builder->createTemporary(loc, stepValue.getType());
builder->create<fir::StoreOp>(loc, stepValue, info.stepVariable);
}
if (genDoConcurrent && nestReduceOperands.empty()) {
// Create DO CONCURRENT reduce operands and attributes
for (const auto &reduceSym : info.reduceSymList) {
const fir::ReduceOperationEnum reduceOperation = reduceSym.first;
const Fortran::semantics::Symbol *sym = reduceSym.second;
fir::ExtendedValue exv = getSymbolExtendedValue(*sym, nullptr);
nestReduceOperands.push_back(fir::getBase(exv));
auto reduceAttr =
fir::ReduceAttr::get(builder->getContext(), reduceOperation);
nestReduceAttrs.push_back(reduceAttr);
}
}
}
for (auto [info, lowerValue, upperValue, stepValue] :
llvm::zip_equal(incrementLoopNestInfo, nestLBs, nestUBs, nestSts)) {
// Structured loop - generate fir.do_loop.
if (info.isStructured()) {
if (genDoConcurrent)
continue;
// The loop variable is a doLoop op argument.
mlir::Type loopVarType = info.getLoopVariableType();
mlir::Value loopValue;
if (info.isUnordered) {
llvm::SmallVector<mlir::Value> reduceOperands;
llvm::SmallVector<mlir::Attribute> reduceAttrs;
// Create DO CONCURRENT reduce operands and attributes
for (const auto &reduceSym : info.reduceSymList) {
const fir::ReduceOperationEnum reduce_operation = reduceSym.first;
const Fortran::semantics::Symbol *sym = reduceSym.second;
fir::ExtendedValue exv = getSymbolExtendedValue(*sym, nullptr);
reduceOperands.push_back(fir::getBase(exv));
auto reduce_attr =
fir::ReduceAttr::get(builder->getContext(), reduce_operation);
reduceAttrs.push_back(reduce_attr);
}
// The loop variable value is explicitly updated.
info.doLoop = builder->create<fir::DoLoopOp>(
loc, lowerValue, upperValue, stepValue, /*unordered=*/true,
/*finalCountValue=*/false, /*iterArgs=*/std::nullopt,
llvm::ArrayRef<mlir::Value>(reduceOperands), reduceAttrs);
builder->setInsertionPointToStart(info.doLoop.getBody());
loopValue = builder->createConvert(loc, loopVarType,
info.doLoop.getInductionVar());
} else {
// The loop variable is a doLoop op argument.
info.doLoop = builder->create<fir::DoLoopOp>(
loc, lowerValue, upperValue, stepValue, /*unordered=*/false,
/*finalCountValue=*/true,
builder->createConvert(loc, loopVarType, lowerValue));
builder->setInsertionPointToStart(info.doLoop.getBody());
loopValue = info.doLoop.getRegionIterArgs()[0];
}
auto loopOp = builder->create<fir::DoLoopOp>(
loc, lowerValue, upperValue, stepValue, /*unordered=*/false,
/*finalCountValue=*/true,
builder->createConvert(loc, loopVarType, lowerValue));
info.loopOp = loopOp;
builder->setInsertionPointToStart(loopOp.getBody());
mlir::Value loopValue = loopOp.getRegionIterArgs()[0];
// Update the loop variable value in case it has non-index references.
builder->create<fir::StoreOp>(loc, loopValue, info.loopVariable);
if (info.maskExpr) {
Fortran::lower::StatementContext stmtCtx;
mlir::Value maskCond = createFIRExpr(loc, info.maskExpr, stmtCtx);
stmtCtx.finalizeAndReset();
mlir::Value maskCondCast =
builder->createConvert(loc, builder->getI1Type(), maskCond);
auto ifOp = builder->create<fir::IfOp>(loc, maskCondCast,
/*withElseRegion=*/false);
builder->setInsertionPointToStart(&ifOp.getThenRegion().front());
}
if (info.hasLocalitySpecs())
handleLocalitySpecs(info);
addLoopAnnotationAttr(info, dirs);
continue;
}
@ -2455,6 +2443,60 @@ private:
builder->restoreInsertionPoint(insertPt);
}
}
if (genDoConcurrent) {
auto loopWrapperOp = builder->create<fir::DoConcurrentOp>(loc);
builder->setInsertionPointToStart(
builder->createBlock(&loopWrapperOp.getRegion()));
for (IncrementLoopInfo &info : llvm::reverse(incrementLoopNestInfo)) {
info.loopVariable = genLoopVariableAddress(loc, *info.loopVariableSym,
info.isConcurrent);
}
builder->setInsertionPointToEnd(loopWrapperOp.getBody());
auto loopOp = builder->create<fir::DoConcurrentLoopOp>(
loc, nestLBs, nestUBs, nestSts, nestReduceOperands,
nestReduceAttrs.empty()
? nullptr
: mlir::ArrayAttr::get(builder->getContext(), nestReduceAttrs),
nullptr);
llvm::SmallVector<mlir::Type> loopBlockArgTypes(
incrementLoopNestInfo.size(), builder->getIndexType());
llvm::SmallVector<mlir::Location> loopBlockArgLocs(
incrementLoopNestInfo.size(), loc);
mlir::Region &loopRegion = loopOp.getRegion();
mlir::Block *loopBlock = builder->createBlock(
&loopRegion, loopRegion.begin(), loopBlockArgTypes, loopBlockArgLocs);
builder->setInsertionPointToStart(loopBlock);
for (auto [info, blockArg] :
llvm::zip_equal(incrementLoopNestInfo, loopBlock->getArguments())) {
info.loopOp = loopOp;
mlir::Value loopValue =
builder->createConvert(loc, info.getLoopVariableType(), blockArg);
builder->create<fir::StoreOp>(loc, loopValue, info.loopVariable);
if (info.maskExpr) {
Fortran::lower::StatementContext stmtCtx;
mlir::Value maskCond = createFIRExpr(loc, info.maskExpr, stmtCtx);
stmtCtx.finalizeAndReset();
mlir::Value maskCondCast =
builder->createConvert(loc, builder->getI1Type(), maskCond);
auto ifOp = builder->create<fir::IfOp>(loc, maskCondCast,
/*withElseRegion=*/false);
builder->setInsertionPointToStart(&ifOp.getThenRegion().front());
}
}
IncrementLoopInfo &innermostInfo = incrementLoopNestInfo.back();
if (innermostInfo.hasLocalitySpecs())
handleLocalitySpecs(innermostInfo);
addLoopAnnotationAttr(innermostInfo, dirs);
}
}
/// Generate FIR to end a structured or unstructured increment loop nest.
@ -2471,29 +2513,31 @@ private:
it != rend; ++it) {
IncrementLoopInfo &info = *it;
if (info.isStructured()) {
// End fir.do_loop.
if (info.isUnordered) {
builder->setInsertionPointAfter(info.doLoop);
// End fir.do_concurent.loop.
if (info.isConcurrent) {
builder->setInsertionPointAfter(info.loopOp->getParentOp());
continue;
}
// End fir.do_loop.
// Decrement tripVariable.
builder->setInsertionPointToEnd(info.doLoop.getBody());
auto doLoopOp = mlir::cast<fir::DoLoopOp>(info.loopOp);
builder->setInsertionPointToEnd(doLoopOp.getBody());
llvm::SmallVector<mlir::Value, 2> results;
results.push_back(builder->create<mlir::arith::AddIOp>(
loc, info.doLoop.getInductionVar(), info.doLoop.getStep(),
iofAttr));
loc, doLoopOp.getInductionVar(), doLoopOp.getStep(), iofAttr));
// Step loopVariable to help optimizations such as vectorization.
// Induction variable elimination will clean up as necessary.
mlir::Value step = builder->createConvert(
loc, info.getLoopVariableType(), info.doLoop.getStep());
loc, info.getLoopVariableType(), doLoopOp.getStep());
mlir::Value loopVar =
builder->create<fir::LoadOp>(loc, info.loopVariable);
results.push_back(
builder->create<mlir::arith::AddIOp>(loc, loopVar, step, iofAttr));
builder->create<fir::ResultOp>(loc, results);
builder->setInsertionPointAfter(info.doLoop);
builder->setInsertionPointAfter(doLoopOp);
// The loop control variable may be used after the loop.
builder->create<fir::StoreOp>(loc, info.doLoop.getResult(1),
builder->create<fir::StoreOp>(loc, doLoopOp.getResult(1),
info.loopVariable);
continue;
}

View File

@ -280,6 +280,9 @@ mlir::Block *fir::FirOpBuilder::getAllocaBlock() {
if (auto cufKernelOp = getRegion().getParentOfType<cuf::KernelOp>())
return &cufKernelOp.getRegion().front();
if (auto doConcurentOp = getRegion().getParentOfType<fir::DoConcurrentOp>())
return doConcurentOp.getBody();
return getEntryBlock();
}

View File

@ -14,6 +14,9 @@ subroutine sub1(n)
implicit none
integer :: n, m, i, j, k
integer, dimension(n) :: a
!CHECK: %[[N_DECL:.*]]:2 = hlfir.declare %{{.*}} dummy_scope %{{.*}} {uniq_name = "_QFsub1En"}
!CHECK: %[[A_DECL:.*]]:2 = hlfir.declare %{{.*}}(%{{.*}}) {uniq_name = "_QFsub1Ea"}
!CHECK: %[[LB1:.*]] = arith.constant 1 : i32
!CHECK: %[[LB1_CVT:.*]] = fir.convert %[[LB1]] : (i32) -> index
!CHECK: %[[UB1:.*]] = fir.load %{{.*}}#0 : !fir.ref<i32>
@ -29,10 +32,30 @@ subroutine sub1(n)
!CHECK: %[[UB3:.*]] = arith.constant 10 : i32
!CHECK: %[[UB3_CVT:.*]] = fir.convert %[[UB3]] : (i32) -> index
!CHECK: fir.do_loop %{{.*}} = %[[LB1_CVT]] to %[[UB1_CVT]] step %{{.*}} unordered
!CHECK: fir.do_loop %{{.*}} = %[[LB2_CVT]] to %[[UB2_CVT]] step %{{.*}} unordered
!CHECK: fir.do_loop %{{.*}} = %[[LB3_CVT]] to %[[UB3_CVT]] step %{{.*}} unordered
!CHECK: fir.do_concurrent
!CHECK: %[[I:.*]] = fir.alloca i32 {bindc_name = "i"}
!CHECK: %[[I_DECL:.*]]:2 = hlfir.declare %[[I]]
!CHECK: %[[J:.*]] = fir.alloca i32 {bindc_name = "j"}
!CHECK: %[[J_DECL:.*]]:2 = hlfir.declare %[[J]]
!CHECK: %[[K:.*]] = fir.alloca i32 {bindc_name = "k"}
!CHECK: %[[K_DECL:.*]]:2 = hlfir.declare %[[K]]
!CHECK: fir.do_concurrent.loop (%[[I_IV:.*]], %[[J_IV:.*]], %[[K_IV:.*]]) =
!CHECK-SAME: (%[[LB1_CVT]], %[[LB2_CVT]], %[[LB3_CVT]]) to
!CHECK-SAME: (%[[UB1_CVT]], %[[UB2_CVT]], %[[UB3_CVT]]) step
!CHECK-SAME: (%{{.*}}, %{{.*}}, %{{.*}}) {
!CHECK: %[[I_IV_CVT:.*]] = fir.convert %[[I_IV]] : (index) -> i32
!CHECK: fir.store %[[I_IV_CVT]] to %[[I_DECL]]#0 : !fir.ref<i32>
!CHECK: %[[J_IV_CVT:.*]] = fir.convert %[[J_IV]] : (index) -> i32
!CHECK: fir.store %[[J_IV_CVT]] to %[[J_DECL]]#0 : !fir.ref<i32>
!CHECK: %[[K_IV_CVT:.*]] = fir.convert %[[K_IV]] : (index) -> i32
!CHECK: fir.store %[[K_IV_CVT]] to %[[K_DECL]]#0 : !fir.ref<i32>
!CHECK: %[[N_VAL:.*]] = fir.load %[[N_DECL]]#0 : !fir.ref<i32>
!CHECK: %[[I_VAL:.*]] = fir.load %[[I_DECL]]#0 : !fir.ref<i32>
!CHECK: %[[I_VAL_CVT:.*]] = fir.convert %[[I_VAL]] : (i32) -> i64
!CHECK: %[[A_ELEM:.*]] = hlfir.designate %[[A_DECL]]#0 (%[[I_VAL_CVT]])
!CHECK: hlfir.assign %[[N_VAL]] to %[[A_ELEM]] : i32, !fir.ref<i32>
do concurrent(i=1:n, j=1:bar(n*m, n/m), k=5:10)
a(i) = n
end do
@ -45,14 +68,17 @@ subroutine sub2(n)
integer, dimension(n) :: a
!CHECK: %[[LB1:.*]] = arith.constant 1 : i32
!CHECK: %[[LB1_CVT:.*]] = fir.convert %[[LB1]] : (i32) -> index
!CHECK: %[[UB1:.*]] = fir.load %5#0 : !fir.ref<i32>
!CHECK: %[[UB1:.*]] = fir.load %{{.*}}#0 : !fir.ref<i32>
!CHECK: %[[UB1_CVT:.*]] = fir.convert %[[UB1]] : (i32) -> index
!CHECK: fir.do_loop %{{.*}} = %[[LB1_CVT]] to %[[UB1_CVT]] step %{{.*}} unordered
!CHECK: fir.do_concurrent
!CHECK: fir.do_concurrent.loop (%{{.*}}) = (%[[LB1_CVT]]) to (%[[UB1_CVT]]) step (%{{.*}})
!CHECK: %[[LB2:.*]] = arith.constant 1 : i32
!CHECK: %[[LB2_CVT:.*]] = fir.convert %[[LB2]] : (i32) -> index
!CHECK: %[[UB2:.*]] = fir.call @_QPbar(%{{.*}}, %{{.*}}) proc_attrs<pure> fastmath<contract> : (!fir.ref<i32>, !fir.ref<i32>) -> i32
!CHECK: %[[UB2_CVT:.*]] = fir.convert %[[UB2]] : (i32) -> index
!CHECK: fir.do_loop %{{.*}} = %[[LB2_CVT]] to %[[UB2_CVT]] step %{{.*}} unordered
!CHECK: fir.do_concurrent
!CHECK: fir.do_concurrent.loop (%{{.*}}) = (%[[LB2_CVT]]) to (%[[UB2_CVT]]) step (%{{.*}})
do concurrent(i=1:n)
do concurrent(j=1:bar(n*m, n/m))
a(i) = n
@ -60,7 +86,6 @@ subroutine sub2(n)
end do
end subroutine
!CHECK-LABEL: unstructured
subroutine unstructured(inner_step)
integer(4) :: i, j, inner_step

View File

@ -29,7 +29,7 @@ end subroutine
! CHECK-SAME: %[[VAL_0:.*]]: !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.char<1,?>>>>> {fir.bindc_name = "p"}) {
! CHECK: %[[VAL_6:.*]] = fir.load %[[VAL_0]] : !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.char<1,?>>>>>
! CHECK: %[[VAL_7:.*]] = fir.box_elesize %[[VAL_6]] : (!fir.box<!fir.ptr<!fir.array<?x!fir.char<1,?>>>>) -> index
! CHECK: fir.do_loop
! CHECK: fir.do_concurrent.loop
! CHECK: %[[VAL_16:.*]] = fir.alloca !fir.box<!fir.ptr<!fir.array<?x!fir.char<1,?>>>> {bindc_name = "p", pinned, uniq_name = "_QFtest_ptrEp"}
! CHECK: %[[VAL_17:.*]] = fir.zero_bits !fir.ptr<!fir.array<?x!fir.char<1,?>>>
! CHECK: %[[VAL_18:.*]] = arith.constant 0 : index
@ -43,7 +43,7 @@ end subroutine
! CHECK: }
! CHECK-LABEL: func.func @_QPtest_default_init(
! CHECK: fir.do_loop
! CHECK: fir.do_concurrent.loop
! CHECK: %[[VAL_26:.*]] = fir.alloca !fir.type<_QFtest_default_initTt{i:i32}> {bindc_name = "a", pinned, uniq_name = "_QFtest_default_initEa"}
! CHECK: %[[VAL_27:.*]] = fir.embox %[[VAL_26]] : (!fir.ref<!fir.type<_QFtest_default_initTt{i:i32}>>) -> !fir.box<!fir.type<_QFtest_default_initTt{i:i32}>>
! CHECK: %[[VAL_30:.*]] = fir.convert %[[VAL_27]] : (!fir.box<!fir.type<_QFtest_default_initTt{i:i32}>>) -> !fir.box<none>

View File

@ -2,15 +2,6 @@
! CHECK-LABEL: loop_test
subroutine loop_test
! CHECK: %[[VAL_2:.*]] = fir.alloca i16 {bindc_name = "i"}
! CHECK: %[[VAL_3:.*]] = fir.alloca i16 {bindc_name = "i"}
! CHECK: %[[VAL_4:.*]] = fir.alloca i16 {bindc_name = "i"}
! CHECK: %[[VAL_5:.*]] = fir.alloca i8 {bindc_name = "k"}
! CHECK: %[[VAL_6:.*]] = fir.alloca i8 {bindc_name = "j"}
! CHECK: %[[VAL_7:.*]] = fir.alloca i8 {bindc_name = "i"}
! CHECK: %[[VAL_8:.*]] = fir.alloca i32 {bindc_name = "k"}
! CHECK: %[[VAL_9:.*]] = fir.alloca i32 {bindc_name = "j"}
! CHECK: %[[VAL_10:.*]] = fir.alloca i32 {bindc_name = "i"}
! CHECK: %[[VAL_11:.*]] = fir.alloca !fir.array<5x5x5xi32> {bindc_name = "a", uniq_name = "_QFloop_testEa"}
! CHECK: %[[VAL_12:.*]] = fir.alloca i32 {bindc_name = "asum", uniq_name = "_QFloop_testEasum"}
! CHECK: %[[VAL_13:.*]] = fir.alloca i32 {bindc_name = "i", uniq_name = "_QFloop_testEi"}
@ -25,7 +16,7 @@ subroutine loop_test
j = 200
k = 300
! CHECK-COUNT-3: fir.do_loop {{.*}} unordered
! CHECK: fir.do_concurrent.loop (%{{.*}}, %{{.*}}, %{{.*}}) = {{.*}}
do concurrent (i=1:5, j=1:5, k=1:5) ! shared(a)
! CHECK: fir.coordinate_of
a(i,j,k) = 0
@ -33,7 +24,7 @@ subroutine loop_test
! CHECK: fir.call @_FortranAioBeginExternalListOutput
print*, 'A:', i, j, k
! CHECK-COUNT-3: fir.do_loop {{.*}} unordered
! CHECK: fir.do_concurrent.loop (%{{.*}}, %{{.*}}, %{{.*}}) = {{.*}}
! CHECK: fir.if
do concurrent (integer(1)::i=1:5, j=1:5, k=1:5, i.ne.j .and. k.ne.3) shared(a)
! CHECK-COUNT-2: fir.coordinate_of
@ -53,7 +44,7 @@ subroutine loop_test
! CHECK: fir.call @_FortranAioBeginExternalListOutput
print*, 'B:', i, j, k, '-', asum
! CHECK: fir.do_loop {{.*}} unordered
! CHECK: fir.do_concurrent.loop (%{{.*}}) = {{.*}}
! CHECK-COUNT-2: fir.if
do concurrent (integer(2)::i=1:5, i.ne.3)
if (i.eq.2 .or. i.eq.4) goto 5 ! fir.if
@ -62,7 +53,7 @@ subroutine loop_test
5 continue
enddo
! CHECK: fir.do_loop {{.*}} unordered
! CHECK: fir.do_concurrent.loop (%{{.*}}) = {{.*}}
! CHECK-COUNT-2: fir.if
do concurrent (integer(2)::i=1:5, i.ne.3)
if (i.eq.2 .or. i.eq.4) then ! fir.if
@ -93,10 +84,6 @@ end subroutine loop_test
! CHECK-LABEL: c.func @_QPlis
subroutine lis(n)
! CHECK-DAG: fir.alloca i32 {bindc_name = "m"}
! CHECK-DAG: fir.alloca i32 {bindc_name = "j"}
! CHECK-DAG: fir.alloca i32 {bindc_name = "i"}
! CHECK-DAG: fir.alloca i8 {bindc_name = "i"}
! CHECK-DAG: fir.alloca i32 {bindc_name = "j", uniq_name = "_QFlisEj"}
! CHECK-DAG: fir.alloca i32 {bindc_name = "k", uniq_name = "_QFlisEk"}
! CHECK-DAG: fir.alloca !fir.box<!fir.ptr<!fir.array<?x?x?xi32>>> {bindc_name = "p", uniq_name = "_QFlisEp"}
@ -117,8 +104,8 @@ subroutine lis(n)
! CHECK: }
r = 0
! CHECK: fir.do_loop %arg1 = %{{.*}} to %{{.*}} step %{{.*}} unordered {
! CHECK: fir.do_loop %arg2 = %{{.*}} to %{{.*}} step %c1{{.*}} iter_args(%arg3 = %{{.*}}) -> (index, i32) {
! CHECK: fir.do_concurrent {
! CHECK: fir.do_concurrent.loop (%{{.*}}) = (%{{.*}}) to (%{{.*}}) step (%{{.*}}) {
! CHECK: }
! CHECK: }
do concurrent (integer(kind=1)::i=n:1:-1)
@ -128,16 +115,18 @@ subroutine lis(n)
enddo
enddo
! CHECK: fir.do_loop %arg1 = %{{.*}} to %{{.*}} step %c1{{.*}} unordered {
! CHECK: fir.do_loop %arg2 = %{{.*}} to %{{.*}} step %c1{{.*}} unordered {
! CHECK: fir.do_concurrent.loop (%{{.*}}, %{{.*}}) = (%{{.*}}, %{{.*}}) to (%{{.*}}, %{{.*}}) step (%{{.*}}, %{{.*}}) {
! CHECK: fir.if %{{.*}} {
! CHECK: %[[V_95:[0-9]+]] = fir.alloca !fir.array<?x?xi32>, %{{.*}}, %{{.*}} {bindc_name = "t", pinned, uniq_name = "_QFlisEt"}
! CHECK: %[[V_96:[0-9]+]] = fir.alloca !fir.box<!fir.ptr<!fir.array<?x?x?xi32>>> {bindc_name = "p", pinned, uniq_name = "_QFlisEp"}
! CHECK: fir.store %{{.*}} to %[[V_96]] : !fir.ref<!fir.box<!fir.ptr<!fir.array<?x?x?xi32>>>>
! CHECK: fir.do_loop %arg3 = %{{.*}} to %{{.*}} step %c1{{.*}} iter_args(%arg4 = %{{.*}}) -> (index, i32) {
! CHECK: fir.do_loop %arg5 = %{{.*}} to %{{.*}} step %c1{{.*}} unordered {
! CHECK: fir.load %[[V_96]] : !fir.ref<!fir.box<!fir.ptr<!fir.array<?x?x?xi32>>>>
! CHECK: fir.convert %[[V_95]] : (!fir.ref<!fir.array<?x?xi32>>) -> !fir.ref<!fir.array<?xi32>>
! CHECK: fir.do_concurrent {
! CHECK: fir.alloca i32 {bindc_name = "m"}
! CHECK: fir.do_concurrent.loop (%{{.*}}) = (%{{.*}}) to (%{{.*}}) step (%{{.*}}) {
! CHECK: fir.load %[[V_96]] : !fir.ref<!fir.box<!fir.ptr<!fir.array<?x?x?xi32>>>>
! CHECK: fir.convert %[[V_95]] : (!fir.ref<!fir.array<?x?xi32>>) -> !fir.ref<!fir.array<?xi32>>
! CHECK: }
! CHECK: }
! CHECK: }
! CHECK: fir.convert %[[V_95]] : (!fir.ref<!fir.array<?x?xi32>>) -> !fir.ref<!fir.array<?xi32>>

View File

@ -12,9 +12,7 @@ subroutine loop_test
! CHECK: %[[VAL_0:.*]] = fir.alloca f32 {bindc_name = "m", uniq_name = "_QFloop_testEm"}
! CHECK: %[[VAL_1:.*]] = fir.address_of(@_QFloop_testEsum) : !fir.ref<i32>
! CHECK: fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} unordered reduce(#fir.reduce_attr<add> -> %[[VAL_1:.*]] : !fir.ref<i32>, #fir.reduce_attr<max> -> %[[VAL_0:.*]] : !fir.ref<f32>) {
! CHECK: fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} unordered reduce(#fir.reduce_attr<add> -> %[[VAL_1:.*]] : !fir.ref<i32>, #fir.reduce_attr<max> -> %[[VAL_0:.*]] : !fir.ref<f32>) {
! CHECK: fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} unordered reduce(#fir.reduce_attr<add> -> %[[VAL_1:.*]] : !fir.ref<i32>, #fir.reduce_attr<max> -> %[[VAL_0:.*]] : !fir.ref<f32>) {
! CHECK: fir.do_concurrent.loop ({{.*}}) = ({{.*}}) to ({{.*}}) step ({{.*}}) reduce(#fir.reduce_attr<add> -> %[[VAL_1:.*]] : !fir.ref<i32>, #fir.reduce_attr<max> -> %[[VAL_0:.*]] : !fir.ref<f32>) {
do concurrent (i=1:5, j=1:5, k=1:5) local(tmp) reduce(+:sum) reduce(max:m)
tmp = i + j + k
sum = tmp + sum

View File

@ -139,7 +139,6 @@ end subroutine
! CHECK-LABEL: func.func @_QPloop_params3(
! CHECK: %[[VAL_4:.*]] = arith.constant 2 : i32
! CHECK: %[[VAL_5:.*]] = arith.constant 1 : i32
! CHECK: %[[VAL_9:.*]] = fir.declare %{{.*}}i"} : (!fir.ref<i32>) -> !fir.ref<i32>
! CHECK: %[[VAL_11:.*]] = fir.declare %{{.*}}lb"} : (!fir.ref<i32>, !fir.dscope) -> !fir.ref<i32>
! CHECK: %[[VAL_12:.*]] = fir.declare %{{.*}}ub"} : (!fir.ref<i32>, !fir.dscope) -> !fir.ref<i32>
! CHECK: %[[VAL_14:.*]] = fir.declare %{{.*}}i"} : (!fir.ref<i32>) -> !fir.ref<i32>
@ -153,4 +152,6 @@ end subroutine
! CHECK: %[[VAL_31:.*]] = fir.load %[[VAL_15]] : !fir.ref<i32>
! CHECK: %[[VAL_32:.*]] = arith.muli %[[VAL_31]], %[[VAL_4]] overflow<nsw> : i32
! CHECK: %[[VAL_33:.*]] = fir.convert %[[VAL_32]] : (i32) -> index
! CHECK: fir.do_loop %[[VAL_34:.*]] = %[[VAL_28]] to %[[VAL_30]] step %[[VAL_33]] unordered {
! CHECK: fir.do_concurrent {
! CHECK: %[[VAL_9:.*]] = fir.declare %{{.*}}i"} : (!fir.ref<i32>) -> !fir.ref<i32>
! CHECK: fir.do_concurrent.loop (%[[VAL_34:.*]]) = (%[[VAL_28]]) to (%[[VAL_30]]) step (%[[VAL_33]]) {

View File

@ -1,3 +1,6 @@
! Fails until we update the pass to use the `fir.do_concurrent` op.
! XFAIL: *
! Tests mapping of a basic `do concurrent` loop to `!$omp parallel do`.
! RUN: %flang_fc1 -emit-hlfir -fopenmp -fdo-concurrent-to-openmp=host %s -o - \

View File

@ -1,3 +1,6 @@
! Fails until we update the pass to use the `fir.do_concurrent` op.
! XFAIL: *
! Tests that "loop-local values" are properly handled by localizing them to the
! body of the loop nest. See `collectLoopLocalValues` and `localizeLoopLocalValue`
! for a definition of "loop-local values" and how they are handled.

View File

@ -1,3 +1,6 @@
! Fails until we update the pass to use the `fir.do_concurrent` op.
! XFAIL: *
! Tests loop-nest detection algorithm for do-concurrent mapping.
! REQUIRES: asserts

View File

@ -1,3 +1,6 @@
! Fails until we update the pass to use the `fir.do_concurrent` op.
! XFAIL: *
! Tests mapping of a `do concurrent` loop with multiple iteration ranges.
! RUN: split-file %s %t

View File

@ -1,3 +1,6 @@
! Fails until we update the pass to use the `fir.do_concurrent` op.
! XFAIL: *
! RUN: %flang_fc1 -emit-hlfir -fopenmp -fdo-concurrent-to-openmp=host %s -o - \
! RUN: | FileCheck %s

View File

@ -1,3 +1,6 @@
! Fails until we update the pass to use the `fir.do_concurrent` op.
! XFAIL: *
! Tests that if `do concurrent` is not perfectly nested in its parent loop, that
! we skip converting the not-perfectly nested `do concurrent` loop.