[VPlan] Factor out logic to common compute costs to helper (NFCI). (#153361)

A number of recipes compute costs for the same opcodes for scalars or
vectors, depending on the recipe.

Move the common logic out to a helper in VPRecipeWithIRFlags, that is
then used by VPReplicateRecipe, VPWidenRecipe and VPInstruction.

This makes it easier to cover all relevant opcodes, without duplication.

PR: https://github.com/llvm/llvm-project/pull/153361
This commit is contained in:
Florian Hahn 2025-08-20 16:05:20 +01:00 committed by GitHub
parent f1458ec623
commit 35be64a416
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 90 additions and 67 deletions

View File

@ -898,6 +898,11 @@ struct VPRecipeWithIRFlags : public VPSingleDefRecipe, public VPIRFlags {
}
void execute(VPTransformState &State) override = 0;
/// Compute the cost for this recipe for \p VF, using \p Opcode and \p Ctx.
std::optional<InstructionCost>
getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF,
VPCostContext &Ctx) const;
};
/// Helper to access the operand that contains the unroll part for this recipe

View File

@ -942,28 +942,90 @@ Value *VPInstruction::generate(VPTransformState &State) {
}
}
std::optional<InstructionCost> VPRecipeWithIRFlags::getCostForRecipeWithOpcode(
unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const {
Type *ScalarTy = Ctx.Types.inferScalarType(this);
Type *ResultTy = VF.isVector() ? toVectorTy(ScalarTy, VF) : ScalarTy;
switch (Opcode) {
case Instruction::FNeg:
return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
TargetTransformInfo::OperandValueInfo RHSInfo = {
TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None};
if (VF.isVector()) {
// Certain instructions can be cheaper to vectorize if they have a
// constant second vector operand. One example of this are shifts on x86.
VPValue *RHS = getOperand(1);
RHSInfo = Ctx.getOperandInfo(RHS);
if (RHSInfo.Kind == TargetTransformInfo::OK_AnyValue &&
getOperand(1)->isDefinedOutsideLoopRegions())
RHSInfo.Kind = TargetTransformInfo::OK_UniformValue;
}
Instruction *CtxI = dyn_cast_or_null<Instruction>(getUnderlyingValue());
SmallVector<const Value *, 4> Operands;
if (CtxI)
Operands.append(CtxI->value_op_begin(), CtxI->value_op_end());
return Ctx.TTI.getArithmeticInstrCost(
Opcode, ResultTy, Ctx.CostKind,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
RHSInfo, Operands, CtxI, &Ctx.TLI);
}
case Instruction::Freeze:
// This opcode is unknown. Assume that it is the same as 'mul'.
return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
Ctx.CostKind);
case Instruction::ExtractValue:
return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
Ctx.CostKind);
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ScalarOpTy = Ctx.Types.inferScalarType(getOperand(0));
Type *OpTy = VF.isVector() ? toVectorTy(ScalarOpTy, VF) : ScalarOpTy;
Instruction *CtxI = dyn_cast_or_null<Instruction>(getUnderlyingValue());
return Ctx.TTI.getCmpSelInstrCost(
Opcode, OpTy, CmpInst::makeCmpResultType(OpTy), getPredicate(),
Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
{TTI::OK_AnyValue, TTI::OP_None}, CtxI);
}
}
return std::nullopt;
}
InstructionCost VPInstruction::computeCost(ElementCount VF,
VPCostContext &Ctx) const {
if (Instruction::isBinaryOp(getOpcode())) {
Type *ResTy = Ctx.Types.inferScalarType(this);
if (!vputils::onlyFirstLaneUsed(this))
ResTy = toVectorTy(ResTy, VF);
if (!getUnderlyingValue()) {
switch (getOpcode()) {
case Instruction::FMul:
return Ctx.TTI.getArithmeticInstrCost(getOpcode(), ResTy, Ctx.CostKind);
default:
// TODO: Compute cost for VPInstructions without underlying values once
// the legacy cost model has been retired.
return 0;
}
if (!getUnderlyingValue() && getOpcode() != Instruction::FMul) {
// TODO: Compute cost for VPInstructions without underlying values once
// the legacy cost model has been retired.
return 0;
}
assert(!doesGeneratePerAllLanes() &&
"Should only generate a vector value or single scalar, not scalars "
"for all lanes.");
return Ctx.TTI.getArithmeticInstrCost(getOpcode(), ResTy, Ctx.CostKind);
return *getCostForRecipeWithOpcode(
getOpcode(),
vputils::onlyFirstLaneUsed(this) ? ElementCount::getFixed(1) : VF, Ctx);
}
switch (getOpcode()) {
@ -2033,20 +2095,13 @@ void VPWidenRecipe::execute(VPTransformState &State) {
InstructionCost VPWidenRecipe::computeCost(ElementCount VF,
VPCostContext &Ctx) const {
switch (Opcode) {
case Instruction::FNeg: {
Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
return Ctx.TTI.getArithmeticInstrCost(
Opcode, VectorTy, Ctx.CostKind,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None});
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
// More complex computation, let the legacy cost-model handle this for now.
return Ctx.getLegacyCost(cast<Instruction>(getUnderlyingValue()), VF);
case Instruction::FNeg:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
@ -2060,45 +2115,12 @@ InstructionCost VPWidenRecipe::computeCost(ElementCount VF,
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
VPValue *RHS = getOperand(1);
// Certain instructions can be cheaper to vectorize if they have a constant
// second vector operand. One example of this are shifts on x86.
TargetTransformInfo::OperandValueInfo RHSInfo = Ctx.getOperandInfo(RHS);
if (RHSInfo.Kind == TargetTransformInfo::OK_AnyValue &&
getOperand(1)->isDefinedOutsideLoopRegions())
RHSInfo.Kind = TargetTransformInfo::OK_UniformValue;
Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
Instruction *CtxI = dyn_cast_or_null<Instruction>(getUnderlyingValue());
SmallVector<const Value *, 4> Operands;
if (CtxI)
Operands.append(CtxI->value_op_begin(), CtxI->value_op_end());
return Ctx.TTI.getArithmeticInstrCost(
Opcode, VectorTy, Ctx.CostKind,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
RHSInfo, Operands, CtxI, &Ctx.TLI);
}
case Instruction::Freeze: {
// This opcode is unknown. Assume that it is the same as 'mul'.
Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
Ctx.CostKind);
}
case Instruction::ExtractValue: {
return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
Ctx.CostKind);
}
case Instruction::Xor:
case Instruction::Freeze:
case Instruction::ExtractValue:
case Instruction::ICmp:
case Instruction::FCmp: {
Instruction *CtxI = dyn_cast_or_null<Instruction>(getUnderlyingValue());
Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
return Ctx.TTI.getCmpSelInstrCost(
Opcode, VectorTy, CmpInst::makeCmpResultType(VectorTy), getPredicate(),
Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
{TTI::OK_AnyValue, TTI::OP_None}, CtxI);
}
case Instruction::FCmp:
return *getCostForRecipeWithOpcode(getOpcode(), VF, Ctx);
default:
llvm_unreachable("Unsupported opcode for instruction");
}
@ -2972,7 +2994,6 @@ InstructionCost VPReplicateRecipe::computeCost(ElementCount VF,
// transform, avoid computing their cost multiple times for now.
Ctx.SkipCostComputation.insert(UI);
Type *ResultTy = Ctx.Types.inferScalarType(this);
switch (UI->getOpcode()) {
case Instruction::GetElementPtr:
// We mark this instruction as zero-cost because the cost of GEPs in
@ -2996,6 +3017,7 @@ InstructionCost VPReplicateRecipe::computeCost(ElementCount VF,
SmallVector<Type *, 4> Tys;
for (VPValue *ArgOp : drop_end(operands()))
Tys.push_back(Ctx.Types.inferScalarType(ArgOp));
Type *ResultTy = Ctx.Types.inferScalarType(this);
return Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
}
case Instruction::Add:
@ -3012,12 +3034,8 @@ InstructionCost VPReplicateRecipe::computeCost(ElementCount VF,
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
auto Op2Info = Ctx.getOperandInfo(getOperand(1));
SmallVector<const Value *, 4> Operands(UI->operand_values());
return Ctx.TTI.getArithmeticInstrCost(
UI->getOpcode(), ResultTy, Ctx.CostKind,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
Op2Info, Operands, UI, &Ctx.TLI) *
return *getCostForRecipeWithOpcode(getOpcode(), ElementCount::getFixed(1),
Ctx) *
(isSingleScalar() ? 1 : VF.getFixedValue());
}
}