[MLIR][NVVM] Update TMA tensor prefetch Op (#153464)

This patch updates the TMA Tensor prefetch Op
to add support for im2col_w/w128 and tile_gather4 modes.
This completes support for all modes available in Blackwell.
* lit tests are added for all possible combinations.
* The invalid tests are moved to a separate file with more coverage.

Signed-off-by: Durgadoss R <durgadossr@nvidia.com>
This commit is contained in:
Durgadoss R 2025-08-22 12:51:29 +05:30 committed by GitHub
parent 5050da7ba1
commit 36dc6146b8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 292 additions and 117 deletions

View File

@ -2302,6 +2302,56 @@ def NVVM_MmaOp : NVVM_Op<"mma.sync", [AttrSizedOperandSegments]> {
// NVVM TMA Ops
//===----------------------------------------------------------------------===//
// List of modes supported for TMA Load and Prefetch Ops
def TMALoadModeTile : I32EnumAttrCase<"TILE", 0, "tile">;
def TMALoadModeIm2Col : I32EnumAttrCase<"IM2COL", 1, "im2col">;
def TMALoadModeIm2ColW : I32EnumAttrCase<"IM2COL_W", 2, "im2col_w">;
def TMALoadModeIm2ColW128 : I32EnumAttrCase<"IM2COL_W_128", 3, "im2col_w_128">;
def TMALoadModeTileGather4 : I32EnumAttrCase<"TILE_GATHER4", 4, "tile_gather4">;
def TMALoadMode : I32EnumAttr<"TMALoadMode", "NVVM TMA Load Mode",
[TMALoadModeTile, TMALoadModeIm2Col,
TMALoadModeIm2ColW, TMALoadModeIm2ColW128,
TMALoadModeTileGather4]> {
let genSpecializedAttr = 0;
let cppNamespace = "::mlir::NVVM";
}
def TMALoadModeAttr : EnumAttr<NVVM_Dialect, TMALoadMode, "tma_load_mode"> {
let summary = "List of Load-Modes supported for TMA Tensor Ops";
let description = [{
TMA Tensor Ops support the following modes, when copying data from
global memory to shared memory (i.e. load):
Tile Mode: It's the default mode. The source multi-dimensional tensor
layout is preserved at the destination.
[For more information, see PTX ISA](https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-tiled-mode)
Im2col Mode: This mode is used when `im2colOffsets` operands are present.
The elements in the Bounding Box of the source tensor are rearranged into
columns at the destination. In this mode, the tensor has to be at least
3-dimensional. The number of `im2colOffsets` is `dims - 2` where `dims`
is the dimension of the tensor.
[For more information, see PTX ISA](https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-im2col-mode)
Im2col_W Mode: This mode is similar to Im2Col mode with the restriction that
elements are accessed across the W dimension only. The number of `im2colOffsets`
are always two, referred as `wHalo` and `wOffset`.
[For more information, see PTX ISA](https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-im2col-w-w128-modes)
Im2col_W_128 Mode: This mode is similar to Im2Col_W mode with the number of
elements accessed across the W dimension is always 128 only.
[For more information, see PTX ISA](https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-im2col-w-w128-modes)
Tile_Gather4 Mode: This mode is similar to Tile mode but works only on 2D tensor.
In gather4 mode, four rows in the source 2D tensor are combined to form a single
2D tensor at the destination. This mode requires five co-ordinates. The first one
represents the column-index followed by four row indices.
[For more information, see PTX ISA](https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-tiled-scatter4-gather4-modes)
}];
let assemblyFormat = "`<` $value `>`";
}
def NVVM_CpAsyncBulkCommitGroupOp : NVVM_Op<"cp.async.bulk.commit.group">,
Arguments<(ins )> {
let assemblyFormat = "attr-dict";
@ -2570,23 +2620,16 @@ def NVVM_CpAsyncBulkPrefetchOp : NVVM_Op<"cp.async.bulk.prefetch"> {
def NVVM_CpAsyncBulkTensorPrefetchOp :
NVVM_Op<"cp.async.bulk.tensor.prefetch", [AttrSizedOperandSegments]> {
let arguments = (ins
LLVM_AnyPointer:$tmaDescriptor,
LLVM_PointerGeneric:$tmaDescriptor,
Variadic<I32>:$coordinates,
Variadic<I16>:$im2colOffsets,
DefaultValuedAttr<TMALoadModeAttr, "TMALoadMode::TILE">:$mode,
Optional<I64>:$l2CacheHint);
let description = [{
Initiates an asynchronous prefetch operation on the tensor data from global
memory to L2 cache.
The Op has two modes:
1) Tiled Mode: It's the default mode. The source multi-dimensional tensor
layout is preserved at the destination.
2) Im2col Mode: This mode is used when `im2colOffsets` operands are present.
the elements in the Bounding Box of the source tensor are rearranged into
columns at the destination. In this mode, the tensor has to be at least
3-dimensional.
memory to L2 cache. This Op supports all the load modes specified in
`TMALoadMode`.
The `l2CacheHint` operand is optional, and it is used to specify cache
eviction policy that may be used during the memory access.
@ -2603,34 +2646,17 @@ def NVVM_CpAsyncBulkTensorPrefetchOp :
}];
let extraClassDeclaration = [{
static llvm::Intrinsic::ID getIntrinsicID(int tensorDims, bool isIm2Col);
static mlir::NVVM::IDArgPair
getIntrinsicIDAndArgs(Operation &op, LLVM::ModuleTranslation &mt,
llvm::IRBuilderBase& builder);
}];
let hasVerifier = 1;
string llvmBuilder = [{
// Arguments to the intrinsic:
// tmaDesc, tensorDims, im2colOffsets
// cache_hint(if applicable) and flag(boolean)
llvm::SmallVector<llvm::Value *> translatedOperands;
translatedOperands.push_back($tmaDescriptor);
for (auto v : op.getCoordinates())
translatedOperands.push_back(moduleTranslation.lookupValue(v));
for (auto v : op.getIm2colOffsets())
translatedOperands.push_back(moduleTranslation.lookupValue(v));
llvm::LLVMContext &ctx = moduleTranslation.getLLVMContext();
auto *i64Unused = llvm::ConstantInt::get(llvm::Type::getInt64Ty(ctx), 0);
bool isCacheHint = op.getL2CacheHint() ? true : false;
translatedOperands.push_back(isCacheHint ? $l2CacheHint : i64Unused);
translatedOperands.push_back(builder.getInt1(isCacheHint));
auto intId = NVVM::CpAsyncBulkTensorPrefetchOp::getIntrinsicID(
op.getCoordinates().size(), op.getIm2colOffsets().size() > 0);
createIntrinsicCall(builder, intId, translatedOperands);
auto [id, args] = NVVM::CpAsyncBulkTensorPrefetchOp::getIntrinsicIDAndArgs(
*op, moduleTranslation, builder);
createIntrinsicCall(builder, id, args);
}];
}

View File

@ -50,7 +50,6 @@ using namespace NVVM;
// This verifier is shared among the following Ops:
// CpAsyncBulkTensorGlobalToSharedClusterOp (TMA Load)
// CpAsyncBulkTensorPrefetchOp (TMA Prefetch)
// CpAsyncBulkTensorReduceOp (TMA Store-Reduce)
static LogicalResult cpAsyncBulkTensorCommonVerifier(size_t tensorDims,
bool isIm2Col,
@ -98,11 +97,47 @@ LogicalResult CpAsyncOp::verify() {
return success();
}
// This verify params can be shared across TMA Load and Prefetch Ops.
static LogicalResult verifyTMALoadParams(size_t tensorDims, size_t numIm2colOff,
TMALoadMode mode, Location loc) {
if (tensorDims < 1 || tensorDims > 5)
return emitError(loc, "expects coordinates between 1 to 5 dimension");
auto checkTMALoadParams = [&](TMALoadMode mode, bool isIm2col,
size_t expectedIm2colOff) -> LogicalResult {
if (isIm2col && (tensorDims < 3))
return emitError(loc)
<< "to use " << stringifyEnum(mode)
<< " mode, the tensor has to be at least 3-dimensional";
if (numIm2colOff != expectedIm2colOff)
return emitError(loc) << " im2col offsets expected " << expectedIm2colOff
<< " (provided " << numIm2colOff << ")";
return success();
};
switch (mode) {
case TMALoadMode::TILE:
return checkTMALoadParams(mode, false, 0);
case TMALoadMode::IM2COL:
return checkTMALoadParams(mode, true, tensorDims - 2);
case TMALoadMode::IM2COL_W:
case TMALoadMode::IM2COL_W_128:
return checkTMALoadParams(mode, true, 2);
case TMALoadMode::TILE_GATHER4:
return (tensorDims == 5)
? checkTMALoadParams(mode, false, 0)
: emitError(loc, "Gather4 mode expects 5 coordinates");
default:
return emitError(loc, "Invalid LoadMode in CpAsyncBulkTensorPrefetchOp.");
}
return success();
}
LogicalResult CpAsyncBulkTensorPrefetchOp::verify() {
size_t numIm2ColOffsets = getIm2colOffsets().size();
bool isIm2Col = numIm2ColOffsets > 0;
return cpAsyncBulkTensorCommonVerifier(getCoordinates().size(), isIm2Col,
numIm2ColOffsets, getLoc());
return verifyTMALoadParams(getCoordinates().size(), getIm2colOffsets().size(),
getMode(), getLoc());
}
LogicalResult CpAsyncBulkTensorReduceOp::verify() {
@ -1435,28 +1470,57 @@ mlir::NVVM::IDArgPair CpAsyncBulkSharedCTAToGlobalOp::getIntrinsicIDAndArgs(
return {id, std::move(args)};
}
llvm::Intrinsic::ID CpAsyncBulkTensorPrefetchOp::getIntrinsicID(int tensorDims,
bool isIm2Col) {
switch (tensorDims) {
case 1:
return llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_1d;
case 2:
return llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_2d;
case 3:
return isIm2Col
? llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_3d
: llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_3d;
case 4:
return isIm2Col
? llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_4d
: llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_4d;
case 5:
return isIm2Col
? llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_5d
: llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_5d;
default:
llvm_unreachable("Invalid TensorDim in CpAsyncBulkTensorPrefetchOp.");
}
mlir::NVVM::IDArgPair CpAsyncBulkTensorPrefetchOp::getIntrinsicIDAndArgs(
Operation &op, LLVM::ModuleTranslation &mt, llvm::IRBuilderBase &builder) {
auto thisOp = cast<NVVM::CpAsyncBulkTensorPrefetchOp>(op);
llvm::SmallVector<llvm::Value *> args;
// Fill the Intrinsic Args
args.push_back(mt.lookupValue(thisOp.getTmaDescriptor()));
for (auto v : thisOp.getCoordinates())
args.push_back(mt.lookupValue(v));
for (auto v : thisOp.getIm2colOffsets())
args.push_back(mt.lookupValue(v));
mlir::Value cacheHint = thisOp.getL2CacheHint();
const bool hasCacheHint = static_cast<bool>(cacheHint);
llvm::Value *i64Unused =
llvm::ConstantInt::get(llvm::Type::getInt64Ty(mt.getLLVMContext()), 0);
args.push_back(hasCacheHint ? mt.lookupValue(cacheHint) : i64Unused);
args.push_back(builder.getInt1(hasCacheHint));
const unsigned NI = llvm::Intrinsic::not_intrinsic;
static constexpr llvm::Intrinsic::ID IDTable[][6] = {
{NI, llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_1d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_2d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_3d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_4d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_5d},
{NI, NI, NI,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_3d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_4d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_5d},
{NI, NI, NI,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_3d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_4d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_5d},
{NI, NI, NI,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_128_3d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_128_4d,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_128_5d},
{NI, NI, NI, NI, NI,
llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_gather4_2d}};
static_assert(getMaxEnumValForTMALoadMode() == std::size(IDTable) - 1,
"TMALoadModes must match number of rows in IDTable");
size_t mode = static_cast<size_t>(thisOp.getMode());
size_t dim = thisOp.getCoordinates().size();
llvm::Intrinsic::ID id = IDTable[mode][dim];
if (id == llvm::Intrinsic::not_intrinsic)
llvm_unreachable("Invalid intrinsic for CpAsyncBulkTensorPrefetchOp.");
return {id, std::move(args)};
}
#define CP_ASYNC_BULK_TENSOR_REDUCE_MODE(op, dim, mode) \

View File

@ -1,70 +1,123 @@
// RUN: mlir-translate -mlir-to-llvmir %s | FileCheck %s
// CHECK-LABEL: @tma_bulk_prefetch
llvm.func @tma_bulk_prefetch(%src : !llvm.ptr<1>, %size : i32, %ch : i64) {
// CHECK: call void @llvm.nvvm.cp.async.bulk.prefetch.L2(ptr addrspace(1) %{{.*}}, i32 %{{.*}}, i64 0, i1 false)
// CHECK: call void @llvm.nvvm.cp.async.bulk.prefetch.L2(ptr addrspace(1) %{{.*}}, i32 %{{.*}}, i64 %{{.*}}, i1 true)
// CHECK-LABEL: define void @tma_bulk_prefetch(ptr addrspace(1) %0, i32 %1, i64 %2) {
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.prefetch.L2(ptr addrspace(1) %0, i32 %1, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.prefetch.L2(ptr addrspace(1) %0, i32 %1, i64 %2, i1 true)
// CHECK-NEXT: ret void
// CHECK-NEXT: }
nvvm.cp.async.bulk.prefetch %src, %size : !llvm.ptr<1>
nvvm.cp.async.bulk.prefetch %src, %size l2_cache_hint = %ch : !llvm.ptr<1>
llvm.return
}
// CHECK-LABEL: @tma_prefetch_1d
llvm.func @tma_prefetch_1d(%tma_desc : !llvm.ptr, %d0 : i32, %ch : i64) {
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.1d(ptr %0, i32 %{{.*}}, i64 0, i1 false)
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.1d(ptr %0, i32 %{{.*}}, i64 %{{.*}}, i1 true)
// CHECK-LABEL: define void @tma_prefetch_1d(ptr %0, i32 %1, i64 %2) {
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.1d(ptr %0, i32 %1, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.1d(ptr %0, i32 %1, i64 %2, i1 true)
// CHECK-NEXT: ret void
// CHECK-NEXT: }
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0] : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0] l2_cache_hint = %ch : !llvm.ptr
llvm.return
}
// CHECK-LABEL: @tma_prefetch_2d
llvm.func @tma_prefetch_2d(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %ch : i64) {
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.2d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i64 0, i1 false)
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.2d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i64 %{{.*}}, i1 true)
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1] : !llvm.ptr
// CHECK-LABEL: define void @tma_prefetch_2d(ptr %0, i32 %1, i32 %2, i64 %3) {
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.2d(ptr %0, i32 %1, i32 %2, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.2d(ptr %0, i32 %1, i32 %2, i64 %3, i1 true)
// CHECK-NEXT: ret void
// CHECK-NEXT: }
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1] {mode = #nvvm.tma_load_mode<tile>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1] l2_cache_hint = %ch : !llvm.ptr
llvm.return
}
// CHECK-LABEL: @tma_prefetch_3d
llvm.func @tma_prefetch_3d(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %d2 : i32, %off0 : i16, %ch : i64) {
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.3d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i64 0, i1 false)
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.3d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i64 %{{.*}}, i1 true)
llvm.func @tma_prefetch_3d(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %d2 : i32, %off0 : i16, %off1 : i16, %ch : i64) {
// CHECK-LABEL: define void @tma_prefetch_3d(ptr %0, i32 %1, i32 %2, i32 %3, i16 %4, i16 %5, i64 %6) {
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.3d(ptr %0, i32 %1, i32 %2, i32 %3, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.3d(ptr %0, i32 %1, i32 %2, i32 %3, i64 %6, i1 true)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.3d(ptr %0, i32 %1, i32 %2, i32 %3, i16 %4, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.3d(ptr %0, i32 %1, i32 %2, i32 %3, i16 %4, i64 %6, i1 true)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.3d(ptr %0, i32 %1, i32 %2, i32 %3, i16 %4, i16 %5, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.3d(ptr %0, i32 %1, i32 %2, i32 %3, i16 %4, i16 %5, i64 %6, i1 true)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.128.3d(ptr %0, i32 %1, i32 %2, i32 %3, i16 %4, i16 %5, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.128.3d(ptr %0, i32 %1, i32 %2, i32 %3, i16 %4, i16 %5, i64 %6, i1 true)
// CHECK-NEXT: ret void
// CHECK-NEXT: }
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] l2_cache_hint = %ch : !llvm.ptr
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.3d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i16 %{{.*}}, i64 0, i1 false)
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.3d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i16 %{{.*}}, i64 %{{.*}}, i1 true)
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] im2col[%off0] : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] im2col[%off0] l2_cache_hint = %ch : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] im2col[%off0] {mode = #nvvm.tma_load_mode<im2col>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] im2col[%off0] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] im2col[%off0, %off1] {mode = #nvvm.tma_load_mode<im2col_w>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] im2col[%off0, %off1] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col_w>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] im2col[%off0, %off1] {mode = #nvvm.tma_load_mode<im2col_w_128>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] im2col[%off0, %off1] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col_w_128>} : !llvm.ptr
llvm.return
}
// CHECK-LABEL: @tma_prefetch_4d
llvm.func @tma_prefetch_4d(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %d2 : i32, %d3 : i32, %off0 : i16, %off1 : i16, %ch : i64) {
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.4d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i64 0, i1 false)
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.4d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i64 %{{.*}}, i1 true)
// CHECK-LABEL: define void @tma_prefetch_4d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i16 %5, i16 %6, i64 %7) {
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.4d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.4d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i64 %7, i1 true)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.4d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i16 %5, i16 %6, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.4d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i16 %5, i16 %6, i64 %7, i1 true)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.4d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i16 %5, i16 %6, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.4d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i16 %5, i16 %6, i64 %7, i1 true)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.128.4d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i16 %5, i16 %6, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.128.4d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i16 %5, i16 %6, i64 %7, i1 true)
// CHECK-NEXT: ret void
// CHECK-NEXT: }
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] l2_cache_hint = %ch : !llvm.ptr
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.4d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i16 %{{.*}}, i16 %{{.*}}, i64 0, i1 false)
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.4d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i16 %{{.*}}, i16 %{{.*}}, i64 %{{.*}}, i1 true)
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] im2col[%off0, %off1] : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] im2col[%off0, %off1] l2_cache_hint = %ch : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] im2col[%off0, %off1] {mode = #nvvm.tma_load_mode<im2col>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] im2col[%off0, %off1] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] im2col[%off0, %off1] {mode = #nvvm.tma_load_mode<im2col_w>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] im2col[%off0, %off1] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col_w>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] im2col[%off0, %off1] {mode = #nvvm.tma_load_mode<im2col_w_128>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] im2col[%off0, %off1] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col_w_128>} : !llvm.ptr
llvm.return
}
// CHECK-LABEL: @tma_prefetch_5d
llvm.func @tma_prefetch_5d(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %d2 : i32, %d3 : i32, %d4 : i32, %off0 : i16, %off1 : i16, %off2 : i16, %ch : i64) {
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.5d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i64 0, i1 false)
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.5d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i64 %{{.*}}, i1 true)
// CHECK-LABEL: define void @tma_prefetch_5d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i16 %6, i16 %7, i16 %8, i64 %9) {
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.5d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.5d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i64 %9, i1 true)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.5d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i16 %6, i16 %7, i16 %8, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.5d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i16 %6, i16 %7, i16 %8, i64 %9, i1 true)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.5d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i16 %6, i16 %7, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.5d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i16 %6, i16 %7, i64 %9, i1 true)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.128.5d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i16 %6, i16 %7, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.128.5d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i16 %6, i16 %7, i64 %9, i1 true)
// CHECK-NEXT: ret void
// CHECK-NEXT: }
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] l2_cache_hint = %ch : !llvm.ptr
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.5d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i16 %{{.*}}, i16 %{{.*}}, i16 %{{.*}}, i64 0, i1 false)
// CHECK: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.5d(ptr %0, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i32 %{{.*}}, i16 %{{.*}}, i16 %{{.*}}, i16 %{{.*}}, i64 %{{.*}}, i1 true)
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1, %off2] : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1, %off2] l2_cache_hint = %ch : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1, %off2] {mode = #nvvm.tma_load_mode<im2col>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1, %off2] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1] {mode = #nvvm.tma_load_mode<im2col_w>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col_w>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1] {mode = #nvvm.tma_load_mode<im2col_w_128>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col_w_128>} : !llvm.ptr
llvm.return
}
llvm.func @tma_prefetch_gather4_2d(%tma_desc : !llvm.ptr, %x0 : i32, %y1 : i32, %y2 : i32, %y3 : i32, %y4 : i32, %ch : i64) {
// CHECK-LABEL: define void @tma_prefetch_gather4_2d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i64 %6) {
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.gather4.2d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i64 0, i1 false)
// CHECK-NEXT: call void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.gather4.2d(ptr %0, i32 %1, i32 %2, i32 %3, i32 %4, i32 %5, i64 %6, i1 true)
// CHECK-NEXT: ret void
// CHECK-NEXT: }
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%x0, %y1, %y2, %y3, %y4] {mode = #nvvm.tma_load_mode<tile_gather4>} : !llvm.ptr
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%x0, %y1, %y2, %y3, %y4] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<tile_gather4>} : !llvm.ptr
llvm.return
}

View File

@ -0,0 +1,56 @@
// RUN: mlir-translate -verify-diagnostics -split-input-file -mlir-to-llvmir %s
llvm.func @tma_prefetch_0d(%tma_desc : !llvm.ptr, %d0 : i32, %ch : i64) {
// expected-error @below {{expects coordinates between 1 to 5 dimension}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[] : !llvm.ptr
llvm.return
}
// -----
llvm.func @tma_prefetch_2d_im2col(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %off0 : i16, %ch : i64) {
// expected-error @below {{to use im2col mode, the tensor has to be at least 3-dimensional}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1] im2col[%off0] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<im2col>} : !llvm.ptr
llvm.return
}
// -----
llvm.func @tma_prefetch_5d_im2col(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %d2 : i32, %d3 : i32, %d4 : i32, %off0 : i16, %off1 : i16, %off2 : i16, %ch : i64) {
// expected-error @below {{im2col offsets expected 3 (provided 2)}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1] {mode = #nvvm.tma_load_mode<im2col>} : !llvm.ptr
llvm.return
}
// -----
llvm.func @tma_prefetch_3d_im2col_w(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %d2 : i32, %off0 : i16) {
// expected-error @below {{im2col offsets expected 2 (provided 1)}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2] im2col[%off0] {mode = #nvvm.tma_load_mode<im2col_w>} : !llvm.ptr
llvm.return
}
// -----
llvm.func @tma_prefetch_4d_im2col_w_128(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %d2 : i32, %d3 : i32, %off0 : i16) {
// expected-error @below {{im2col offsets expected 2 (provided 1)}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3] im2col[%off0] {mode = #nvvm.tma_load_mode<im2col_w_128>} : !llvm.ptr
llvm.return
}
// -----
llvm.func @tma_prefetch_gather4_3d(%tma_desc : !llvm.ptr, %d0 : i32) {
// expected-error @below {{Gather4 mode expects 5 coordinates}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0] {mode = #nvvm.tma_load_mode<tile_gather4>} : !llvm.ptr
llvm.return
}
// -----
llvm.func @tma_prefetch_gather4_2d(%tma_desc : !llvm.ptr, %x0 : i32, %y1 : i32, %y2 : i32, %y3 : i32, %y4 : i32, %off0 : i16, %ch : i64) {
// expected-error @below {{im2col offsets expected 0 (provided 1)}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%x0, %y1, %y2, %y3, %y4] im2col[%off0] l2_cache_hint = %ch {mode = #nvvm.tma_load_mode<tile_gather4>} : !llvm.ptr
llvm.return
}

View File

@ -104,30 +104,6 @@ llvm.func @nvvm_fence_proxy_release() {
// -----
llvm.func @tma_prefetch_0d(%tma_desc : !llvm.ptr, %d0 : i32, %ch : i64) {
// expected-error @below {{expects coordinates between 1 to 5 dimension}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[] : !llvm.ptr
llvm.return
}
// -----
llvm.func @tma_prefetch_2d_im2col(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %off0 : i16, %ch : i64) {
// expected-error @below {{to use im2col mode, the tensor has to be at least 3-dimensional}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1] im2col[%off0] l2_cache_hint = %ch : !llvm.ptr
llvm.return
}
// -----
llvm.func @tma_prefetch_5d_im2col(%tma_desc : !llvm.ptr, %d0 : i32, %d1 : i32, %d2 : i32, %d3 : i32, %d4 : i32, %off0 : i16, %off1 : i16, %off2 : i16, %ch : i64) {
// expected-error @below {{im2col offsets must be 2 less than number of coordinates}}
nvvm.cp.async.bulk.tensor.prefetch %tma_desc, box[%d0, %d1, %d2, %d3, %d4] im2col[%off0, %off1] : !llvm.ptr
llvm.return
}
// -----
llvm.func @tma_reduce_0d(%src : !llvm.ptr<3>, %tma_desc : !llvm.ptr, %ch : i64) {
// expected-error @below {{expects coordinates between 1 to 5 dimension}}
nvvm.cp.async.bulk.tensor.reduce %tma_desc, %src, box[] {redKind = #nvvm.tma_redux_kind<add>}: !llvm.ptr, !llvm.ptr<3>