[MLIR][NVVM] Improve inline_ptx, add readwrite support (#154358)

Key Features
1. Multiple SSA returns – no struct packing/unpacking required.
2. Automatic struct unpacking – values are directly usable.
3. Readable register mapping
    * {$rwN} → read-write
    * {$roN} → read-only
    * {$woN} → write-only
4. Full read-write support (+ modifier).
5. Simplified operand specification – avoids cryptic
"=r,=r,=f,=f,f,f,0,1" constraints.
6. Predicate support: PTX `@p` predication support

IR Example:
```
%wo0, %wo1 = nvvm.inline_ptx """
 .reg .pred p;
 setp.ge.s32 p,   {$r0}, {$r1};
 selp.s32 {$rw0}, {$r0}, {$r1}, p;
 selp.s32 {$rw1}, {$r0}, {$r1}, p;
 selp.s32 {$w0},  {$r0}, {$r1}, p;
 selp.s32 {$w1},  {$r0}, {$r1}, p;
""" ro(%a, %b : f32, f32) rw(%c, %d : i32, i32) -> f32, f32
```

After lowering
```
 %0 = llvm.inline_asm has_side_effects asm_dialect = att
 "{
                              .reg .pred p;\
                              setp.ge.s32 p, $4, $5;   \
                              selp.s32   $0, $4, $5, p;\
                              selp.s32   $1, $4, $5, p;\
                              selp.s32   $2, $4, $5, p;\
                              selp.s32   $3, $4, $5, p;\
   }"
   "=r,=r,=f,=f,f,f,0,1"
   %c500_i32, %c400_i32, %cst, %cst_0
   : (i32, i32, f32, f32)
   -> !llvm.struct<(i32, i32, f32, f32)>

 %1 = llvm.extractvalue %0 : !llvm.struct<(i32, i32, f32, f32)>
 %2 = llvm.extractvalue %0 : !llvm.struct<(i32, i32, f32, f32)>
 %3 = llvm.extractvalue %0 : !llvm.struct<(i32, i32, f32, f32)>
 %4 = llvm.extractvalue %0 : !llvm.struct<(i32, i32, f32, f32)>

 // Unpacked result from nvvm.inline_ptx
 %5 = arith.addi %1, %2 : i32
 // read only
 %6 = arith.addf %cst, %cst_0 : f32
 // write only
 %7 = arith.addf %3, %4 : f32
```
This commit is contained in:
Guray Ozen 2025-08-21 17:42:18 +02:00 committed by GitHub
parent 1b0b59ae43
commit 5c36fb3303
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 483 additions and 68 deletions

View File

@ -26,11 +26,11 @@ namespace NVVM {
enum class PTXRegisterMod {
/// Read register with no modifier
Read = 0,
/// Read register with '+' modifier
/// Write register with '=' modifier
Write = 2,
/// Read register with '=' modifier.
/// Note that, this is not natively supported by LLVM, but it is possible to
/// set read and write for the same operand.
/// ReadWrite register with '+' modifier.
/// Note that, this is not natively supported by LLVM, the Interface does
/// mapping
ReadWrite = 1,
};
@ -67,13 +67,19 @@ class PtxBuilder {
SmallVector<Value> ptxOperands;
// Register constraints (read, write, readwrite) and register data types
std::string registerConstraints;
// Modifiers
SmallVector<PTXRegisterMod> registerModifiers;
// Has return value as write-only or read-write
bool hasResult = false;
// Indicates if the Op will handle the register mapping manually.
bool needsManualRegisterMapping = false;
public:
/// Single constructor that only initializes members.
PtxBuilder(Operation *op, PatternRewriter &rewriter)
: interfaceOp(op), rewriter(rewriter) {}
PtxBuilder(Operation *op, PatternRewriter &rewriter,
bool needsManualRegisterMapping = false)
: interfaceOp(op), rewriter(rewriter),
needsManualRegisterMapping(needsManualRegisterMapping) {}
/// Add an operand with the read/write input type.
void insertValue(Value v, PTXRegisterMod itype = PTXRegisterMod::Read);
@ -87,6 +93,16 @@ public:
void buildAndReplaceOp();
};
/// Count the number of placeholder variables such as {$r}, {$w}, {$rw} in the
/// PTX code.
void countPlaceholderNumbers(StringRef ptxCode,
llvm::SmallDenseSet<unsigned> &seenRW,
llvm::SmallDenseSet<unsigned> &seenW,
llvm::SmallDenseSet<unsigned> &seenR,
llvm::SmallVectorImpl<unsigned> &rwNums,
llvm::SmallVectorImpl<unsigned> &wNums,
llvm::SmallVectorImpl<unsigned> &rNums);
} // namespace NVVM
} // namespace mlir

View File

@ -124,19 +124,21 @@ def BasicPtxBuilderOpInterface : OpInterface<"BasicPtxBuilderInterface"> {
following this order:
1) Adds results
2) Adds operands
3) Adds attributes
3) Adds attributes
Returns true if the OP is going to do register mapping itself
}],
/*retType=*/"void",
/*retType=*/"bool",
/*methodName=*/"getAsmValues",
/*args=*/(ins "::mlir::RewriterBase &":$rewriter,
"llvm::SmallVectorImpl<std::pair<mlir::Value, mlir::NVVM::PTXRegisterMod>>&" : $asmValues),
"llvm::SmallVectorImpl<std::pair<mlir::Value, mlir::NVVM::PTXRegisterMod>>&" : $asmValues
),
/*methodBody=*/"",
/*defaultImpl=*/ [{
mlir::Operation* op = $_op;
// Step 1. Add results
for (auto val : op->getResults())
asmValues.push_back({val, mlir::NVVM::PTXRegisterMod::Write});
for (auto val : op->getResults())
asmValues.push_back({val, mlir::NVVM::PTXRegisterMod::Write});
// Step 2. Add operands
for (auto val : op->getOperands())
@ -149,6 +151,7 @@ def BasicPtxBuilderOpInterface : OpInterface<"BasicPtxBuilderInterface"> {
asmValues.push_back({val, mlir::NVVM::PTXRegisterMod::Read});
}
}
return false; // No manual mapping needed
}]
>
];

View File

@ -315,16 +315,19 @@ def NVVM_InlinePtxOp : NVVM_Op<"inline_ptx",
}];
let arguments = (ins Variadic<AnyType>:$readOnlyArgs,
Variadic<AnyType>:$readWriteArgs,
StrAttr:$ptxCode,
PtxPredicate:$predicate);
let results = (outs Variadic<AnyType>:$writeOnlyArgs);
let assemblyFormat = [{
$ptxCode `(` $readOnlyArgs `)`
(`,` `predicate` `=` $predicate^)? attr-dict
`:` type(operands)
(`->` type($writeOnlyArgs)^)?
let assemblyFormat = [{
$ptxCode
( `ro` `(` $readOnlyArgs^ `:` type($readOnlyArgs) `)` )?
( `rw` `(` $readWriteArgs^ `:` type($readWriteArgs) `)` )?
(`,` `predicate` `=` $predicate^)?
attr-dict
( `->` type($writeOnlyArgs)^ )?
}];
let extraClassDefinition = [{
@ -333,6 +336,10 @@ def NVVM_InlinePtxOp : NVVM_Op<"inline_ptx",
return std::string(ptxInstStr.data());
}
}];
let extraClassDeclaration = [{
bool getAsmValues(RewriterBase &, llvm::SmallVectorImpl<std::pair<mlir::Value, mlir::NVVM::PTXRegisterMod>> &);
}];
}
//===----------------------------------------------------------------------===//
@ -3057,8 +3064,7 @@ def NVVM_WgmmaMmaAsyncOp : NVVM_Op<"wgmma.mma_async",
let hasVerifier = 1;
let extraClassDeclaration = [{
void getAsmValues(RewriterBase &rewriter,
llvm::SmallVectorImpl<std::pair<mlir::Value, mlir::NVVM::PTXRegisterMod>> &asmValues);
bool getAsmValues(RewriterBase &, llvm::SmallVectorImpl<std::pair<mlir::Value, mlir::NVVM::PTXRegisterMod>> &);
}];
}

View File

@ -57,9 +57,9 @@ struct PtxLowering
SmallVector<std::pair<Value, PTXRegisterMod>> asmValues;
LDBG() << op.getPtx();
PtxBuilder generator(op, rewriter);
op.getAsmValues(rewriter, asmValues);
bool needsManualMapping = op.getAsmValues(rewriter, asmValues);
PtxBuilder generator(op, rewriter, needsManualMapping);
for (auto &[asmValue, modifier] : asmValues) {
LDBG() << asmValue << "\t Modifier : " << modifier;
generator.insertValue(asmValue, modifier);

View File

@ -13,7 +13,10 @@
#include "mlir/Dialect/LLVMIR/BasicPtxBuilderInterface.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/DebugLog.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Regex.h"
#define DEBUG_TYPE "ptx-builder"
@ -59,19 +62,37 @@ static char getRegisterType(Value v) {
return getRegisterType(v.getType());
}
/// Extract every element of a struct value.
static SmallVector<Value> extractStructElements(PatternRewriter &rewriter,
Location loc, Value structVal) {
auto structTy = dyn_cast<LLVM::LLVMStructType>(structVal.getType());
assert(structTy && "expected LLVM struct");
SmallVector<Value> elems;
for (unsigned i : llvm::seq<unsigned>(0, structTy.getBody().size()))
elems.push_back(rewriter.create<LLVM::ExtractValueOp>(loc, structVal, i));
return elems;
}
void PtxBuilder::insertValue(Value v, PTXRegisterMod itype) {
LDBG() << v << "\t Modifier : " << &itype;
LDBG() << v << "\t Modifier : " << itype << "\n";
registerModifiers.push_back(itype);
auto getModifier = [&]() -> const char * {
if (itype == PTXRegisterMod::ReadWrite) {
assert(false && "Read-Write modifier is not supported. Try setting the "
"same value as Write and Read separately.");
switch (itype) {
case PTXRegisterMod::Read:
return "";
case PTXRegisterMod::Write:
return "=";
case PTXRegisterMod::ReadWrite:
// "Read-Write modifier is not actually supported
// Interface will change it to "=" later and add integer mapping
return "+";
}
if (itype == PTXRegisterMod::Write) {
return "=";
}
return "";
llvm_unreachable("Unknown PTX register modifier");
};
auto addValue = [&](Value v) {
if (itype == PTXRegisterMod::Read) {
ptxOperands.push_back(v);
@ -108,38 +129,247 @@ void PtxBuilder::insertValue(Value v, PTXRegisterMod itype) {
}
/// Check if the operation needs to pack and unpack results.
static bool needsPackUnpack(BasicPtxBuilderInterface interfaceOp) {
return interfaceOp->getNumResults() > 1;
static bool
needsPackUnpack(BasicPtxBuilderInterface interfaceOp,
bool needsManualRegisterMapping,
SmallVectorImpl<PTXRegisterMod> &registerModifiers) {
if (needsManualRegisterMapping)
return false;
const unsigned writeOnlyVals = interfaceOp->getNumResults();
const unsigned readWriteVals =
llvm::count_if(registerModifiers, [](PTXRegisterMod m) {
return m == PTXRegisterMod::ReadWrite;
});
return (writeOnlyVals + readWriteVals) > 1;
}
/// Pack the result types of the interface operation.
/// If the operation has multiple results, it packs them into a struct
/// type. Otherwise, it returns the original result types.
static SmallVector<Type> packResultTypes(MLIRContext *ctx,
BasicPtxBuilderInterface interfaceOp) {
TypeRange results = interfaceOp->getResultTypes();
static SmallVector<Type>
packResultTypes(BasicPtxBuilderInterface interfaceOp,
bool needsManualRegisterMapping,
SmallVectorImpl<PTXRegisterMod> &registerModifiers,
SmallVectorImpl<Value> &ptxOperands) {
MLIRContext *ctx = interfaceOp->getContext();
TypeRange resultRange = interfaceOp->getResultTypes();
if (!needsPackUnpack(interfaceOp))
return llvm::to_vector<1>(results);
if (!needsPackUnpack(interfaceOp, needsManualRegisterMapping,
registerModifiers)) {
// Single value path:
if (interfaceOp->getResults().size() == 1)
return SmallVector<Type>{resultRange.front()};
SmallVector<mlir::Type> elems(results.begin(), results.end());
auto sTy = LLVM::LLVMStructType::getLiteral(ctx, elems, /*isPacked=*/false);
return {sTy};
// No declared results: if there is an RW, forward its type.
for (auto [m, v] : llvm::zip(registerModifiers, ptxOperands))
if (m == PTXRegisterMod::ReadWrite)
return SmallVector<Type>{v.getType()};
}
SmallVector<Type> packed;
for (auto [m, v] : llvm::zip(registerModifiers, ptxOperands))
if (m == PTXRegisterMod::ReadWrite)
packed.push_back(v.getType());
for (Type t : resultRange)
packed.push_back(t);
if (packed.empty())
return {};
auto sTy = LLVM::LLVMStructType::getLiteral(ctx, packed, /*isPacked=*/false);
return SmallVector<Type>{sTy};
}
/// Canonicalize the register constraints:
/// - Turn every "+X" into "=X"
/// - Append (at the very end) the 0-based indices of tokens that were "+X"
/// Examples:
/// "+f,+f,+r,=r,=r,r,r" -> "=f,=f,=r,=r,=r,r,r,0,1,2"
/// "+f,+f,+r,=r,=r" -> "=f,=f,=r,=r,=r,0,1,2"
static std::string canonicalizeRegisterConstraints(llvm::StringRef csv) {
SmallVector<llvm::StringRef> toks;
SmallVector<std::string> out;
SmallVector<unsigned> plusIdx;
csv.split(toks, ',');
out.reserve(toks.size() + 8);
for (unsigned i = 0, e = toks.size(); i < e; ++i) {
StringRef t = toks[i].trim();
if (t.consume_front("+")) {
plusIdx.push_back(i);
out.push_back(("=" + t).str());
} else {
out.push_back(t.str());
}
}
// Append indices of original "+X" tokens.
for (unsigned idx : plusIdx)
out.push_back(std::to_string(idx));
// Join back to CSV.
std::string result;
result.reserve(csv.size() + plusIdx.size() * 2);
llvm::raw_string_ostream os(result);
for (size_t i = 0; i < out.size(); ++i) {
if (i)
os << ',';
os << out[i];
}
return os.str();
}
constexpr llvm::StringLiteral kReadWritePrefix{"rw"};
constexpr llvm::StringLiteral kWriteOnlyPrefix{"w"};
constexpr llvm::StringLiteral kReadOnlyPrefix{"r"};
/// Returns a regex that matches {$rwN}, {$wN}, {$rN}
static llvm::Regex getPredicateMappingRegex() {
llvm::Regex rx(llvm::formatv(R"(\{\$({0}|{1}|{2})([0-9]+)\})",
kReadWritePrefix, kWriteOnlyPrefix,
kReadOnlyPrefix)
.str());
return rx;
}
void mlir::NVVM::countPlaceholderNumbers(
StringRef ptxCode, llvm::SmallDenseSet<unsigned int> &seenRW,
llvm::SmallDenseSet<unsigned int> &seenW,
llvm::SmallDenseSet<unsigned int> &seenR,
llvm::SmallVectorImpl<unsigned int> &rwNums,
llvm::SmallVectorImpl<unsigned int> &wNums,
llvm::SmallVectorImpl<unsigned int> &rNums) {
llvm::Regex rx = getPredicateMappingRegex();
StringRef rest = ptxCode;
SmallVector<StringRef, 3> m; // 0: full, 1: kind, 2: number
while (!rest.empty() && rx.match(rest, &m)) {
unsigned num = 0;
(void)m[2].getAsInteger(10, num);
// Insert it into the vector only the first time we see this number
if (m[1].equals_insensitive(kReadWritePrefix)) {
if (seenRW.insert(num).second)
rwNums.push_back(num);
} else if (m[1].equals_insensitive(kWriteOnlyPrefix)) {
if (seenW.insert(num).second)
wNums.push_back(num);
} else {
if (seenR.insert(num).second)
rNums.push_back(num);
}
const size_t advance = (size_t)(m[0].data() - rest.data()) + m[0].size();
rest = rest.drop_front(advance);
}
}
/// Rewrites `{$rwN}`, `{$wN}`, and `{$rN}` placeholders in `ptxCode` into
/// compact `$K` indices:
/// - All `rw*` first (sorted by N),
/// - Then `w*`,
/// - Then `r*`.
/// If there a predicate, it comes always in the end.
/// Each number is assigned once; duplicates are ignored.
///
/// Example Input:
/// "{
/// reg .pred p;
/// setp.ge.s32 p, {$r0}, {$r1};"
/// selp.s32 {$rw0}, {$r0}, {$r1}, p;
/// selp.s32 {$rw1}, {$r0}, {$r1}, p;
/// selp.s32 {$w0}, {$r0}, {$r1}, p;
/// selp.s32 {$w1}, {$r0}, {$r1}, p;
/// }\n"
/// Example Output:
/// "{
/// reg .pred p;
/// setp.ge.s32 p, $4, $5;"
/// selp.s32 $0, $4, $5, p;
/// selp.s32 $1, $4, $5, p;
/// selp.s32 $2, $4, $5, p;
/// selp.s32 $3, $4, $5, p;
/// }\n"
static std::string rewriteAsmPlaceholders(llvm::StringRef ptxCode) {
llvm::SmallDenseSet<unsigned> seenRW, seenW, seenR;
llvm::SmallVector<unsigned> rwNums, wNums, rNums;
// Step 1. Count Register Placeholder numbers
countPlaceholderNumbers(ptxCode, seenRW, seenW, seenR, rwNums, wNums, rNums);
// Step 2. Sort the Register Placeholder numbers
llvm::sort(rwNums);
llvm::sort(wNums);
llvm::sort(rNums);
// Step 3. Create mapping from original to new IDs
llvm::DenseMap<unsigned, unsigned> rwMap, wMap, rMap;
unsigned nextId = 0;
for (unsigned n : rwNums)
rwMap[n] = nextId++;
for (unsigned n : wNums)
wMap[n] = nextId++;
for (unsigned n : rNums)
rMap[n] = nextId++;
// Step 4. Rewrite the PTX code with new IDs
std::string out;
out.reserve(ptxCode.size());
size_t prev = 0;
StringRef rest = ptxCode;
SmallVector<StringRef, 3> matches;
llvm::Regex rx = getPredicateMappingRegex();
while (!rest.empty() && rx.match(rest, &matches)) {
// Compute absolute match bounds in the original buffer.
size_t absStart = (size_t)(matches[0].data() - ptxCode.data());
size_t absEnd = absStart + matches[0].size();
// Emit text before the match.
out.append(ptxCode.data() + prev, ptxCode.data() + absStart);
// Emit compact $K
unsigned num = 0;
(void)matches[2].getAsInteger(10, num);
unsigned id = 0;
if (matches[1].equals_insensitive(kReadWritePrefix))
id = rwMap.lookup(num);
else if (matches[1].equals_insensitive(kWriteOnlyPrefix))
id = wMap.lookup(num);
else
id = rMap.lookup(num);
out.push_back('$');
out += std::to_string(id);
prev = absEnd;
const size_t advance =
(size_t)(matches[0].data() - rest.data()) + matches[0].size();
rest = rest.drop_front(advance);
}
// Step 5. Tail.
out.append(ptxCode.data() + prev, ptxCode.data() + ptxCode.size());
return out;
}
LLVM::InlineAsmOp PtxBuilder::build() {
MLIRContext *ctx = interfaceOp->getContext();
auto asmDialectAttr = LLVM::AsmDialectAttr::get(interfaceOp->getContext(),
LLVM::AsmDialect::AD_ATT);
SmallVector<Type> resultTypes = packResultTypes(ctx, interfaceOp);
SmallVector<Type> resultTypes = packResultTypes(
interfaceOp, needsManualRegisterMapping, registerModifiers, ptxOperands);
// Remove the last comma from the constraints string.
if (!registerConstraints.empty() &&
registerConstraints[registerConstraints.size() - 1] == ',')
registerConstraints.pop_back();
registerConstraints = canonicalizeRegisterConstraints(registerConstraints);
std::string ptxInstruction = interfaceOp.getPtx();
if (!needsManualRegisterMapping)
ptxInstruction = rewriteAsmPlaceholders(ptxInstruction);
// Add the predicate to the asm string.
if (interfaceOp.getPredicate().has_value() &&
@ -169,33 +399,87 @@ void PtxBuilder::buildAndReplaceOp() {
LLVM::InlineAsmOp inlineAsmOp = build();
LDBG() << "\n Generated PTX \n\t" << inlineAsmOp;
// Case 1: no result
if (inlineAsmOp->getNumResults() == 0) {
// Case 0: no result at all → just erase wrapper op.
if (!hasResult) {
rewriter.eraseOp(interfaceOp);
return;
}
// Case 2: single result, forward it directly
if (!needsPackUnpack(interfaceOp)) {
if (needsManualRegisterMapping) {
rewriter.replaceOp(interfaceOp, inlineAsmOp->getResults());
return;
}
// Case 3: multiple results were packed; unpack the struct.
assert(mlir::LLVM::LLVMStructType::classof(
inlineAsmOp.getResultTypes().front()) &&
"Expected result type to be LLVMStructType when unpacking multiple "
"results");
auto structTy = llvm::cast<mlir::LLVM::LLVMStructType>(
inlineAsmOp.getResultTypes().front());
SmallVector<mlir::Value> unpacked;
Value structVal = inlineAsmOp.getResult(0);
for (auto [idx, elemTy] : llvm::enumerate(structTy.getBody())) {
Value unpackedValue = LLVM::ExtractValueOp::create(
rewriter, interfaceOp->getLoc(), structVal, idx);
unpacked.push_back(unpackedValue);
// Case 1: Simple path, return single scalar
if (!needsPackUnpack(interfaceOp, needsManualRegisterMapping,
registerModifiers)) {
if (inlineAsmOp->getNumResults() > 0) {
rewriter.replaceOp(interfaceOp, inlineAsmOp->getResults());
} else {
// RW-only case with no declared results: forward the RW value.
SmallVector<Value> results;
for (auto [m, v] : llvm::zip(registerModifiers, ptxOperands))
if (m == PTXRegisterMod::ReadWrite) {
results.push_back(v);
break;
}
rewriter.replaceOp(interfaceOp, results);
}
return;
}
rewriter.replaceOp(interfaceOp, unpacked);
const bool hasRW = llvm::any_of(registerModifiers, [](PTXRegisterMod m) {
return m == PTXRegisterMod::ReadWrite;
});
// All multi-value paths produce a single struct result we need to unpack.
assert(LLVM::LLVMStructType::classof(inlineAsmOp.getResultTypes().front()) &&
"expected struct return for multi-result inline asm");
Value structVal = inlineAsmOp.getResult(0);
SmallVector<Value> unpacked =
extractStructElements(rewriter, interfaceOp->getLoc(), structVal);
// Case 2: only declared results (no RW): replace the op with all unpacked.
if (!hasRW && interfaceOp->getResults().size() > 0) {
rewriter.replaceOp(interfaceOp, unpacked);
return;
}
// Case 3: RW-only (no declared results): update RW uses and erase wrapper.
if (hasRW && interfaceOp->getResults().size() == 0) {
unsigned idx = 0;
for (auto [m, v] : llvm::zip(registerModifiers, ptxOperands)) {
if (m != PTXRegisterMod::ReadWrite)
continue;
Value repl = unpacked[idx++];
v.replaceUsesWithIf(repl, [&](OpOperand &use) {
Operation *owner = use.getOwner();
return owner != interfaceOp && owner != inlineAsmOp;
});
}
rewriter.eraseOp(interfaceOp);
return;
}
// Case 4: mixed (RW + declared results).
{
// First rewrite RW operands in place.
unsigned idx = 0;
for (auto [m, v] : llvm::zip(registerModifiers, ptxOperands)) {
if (m != PTXRegisterMod::ReadWrite)
continue;
Value repl = unpacked[idx++];
v.replaceUsesWithIf(repl, [&](OpOperand &use) {
Operation *owner = use.getOwner();
return owner != interfaceOp && owner != inlineAsmOp;
});
}
// The remaining unpacked values correspond to the declared results.
SmallVector<Value> tail;
tail.reserve(unpacked.size() - idx);
for (unsigned i = idx, e = unpacked.size(); i < e; ++i)
tail.push_back(unpacked[i]);
rewriter.replaceOp(interfaceOp, tail);
}
}

View File

@ -1123,7 +1123,7 @@ std::string NVVM::WgmmaMmaAsyncOp::getPtx() {
return ptx;
}
void NVVM::WgmmaMmaAsyncOp::getAsmValues(
bool NVVM::WgmmaMmaAsyncOp::getAsmValues(
RewriterBase &rewriter,
llvm::SmallVectorImpl<std::pair<mlir::Value, mlir::NVVM::PTXRegisterMod>>
&asmValues) {
@ -1154,7 +1154,9 @@ void NVVM::WgmmaMmaAsyncOp::getAsmValues(
{makeConstantI32(rewriter, 1 - static_cast<int>(getLayoutB())),
mlir::NVVM::PTXRegisterMod::Read});
}
return true; // Has manual mapping
}
LogicalResult NVVM::FenceProxyOp::verify() {
if (getKind() == NVVM::ProxyKind::TENSORMAP)
return emitOpError() << "tensormap proxy is not a supported proxy kind";
@ -1870,6 +1872,21 @@ llvm::Intrinsic::ID PrefetchOp::getIntrinsicID(NVVM::PrefetchOp &op) {
}
}
bool NVVM::InlinePtxOp::getAsmValues(
RewriterBase &rewriter,
llvm::SmallVectorImpl<std::pair<mlir::Value, mlir::NVVM::PTXRegisterMod>>
&asmValues) {
for (auto arg : getReadWriteArgs())
asmValues.push_back({arg, mlir::NVVM::PTXRegisterMod::ReadWrite});
for (auto arg : getResults())
asmValues.push_back({arg, mlir::NVVM::PTXRegisterMod::Write});
for (auto arg : getReadOnlyArgs())
asmValues.push_back({arg, mlir::NVVM::PTXRegisterMod::Read});
if (getPredicate())
asmValues.push_back({getPredicate(), mlir::NVVM::PTXRegisterMod::Read});
return false; // No manual mapping needed
}
//===----------------------------------------------------------------------===//
// NVVMDialect initialization, type parsing, and registration.
//===----------------------------------------------------------------------===//

View File

@ -667,34 +667,82 @@ llvm.func @init_mbarrier(
%count : i32,
%pred : i1) {
// CHECK: llvm.inline_asm has_side_effects asm_dialect = att "mbarrier.init.b64 [$0], $1;", "l,r"
nvvm.inline_ptx "mbarrier.init.b64 [$0], $1;" (%barrier_gen, %count) : !llvm.ptr, i32
nvvm.inline_ptx "mbarrier.init.b64 [{$r0}], {$r1};" ro (%barrier_gen, %count : !llvm.ptr, i32)
// CHECK: llvm.inline_asm has_side_effects asm_dialect = att "@$2 mbarrier.init.b64 [$0], $1;", "l,r,b"
nvvm.inline_ptx "mbarrier.init.b64 [$0], $1;" (%barrier_gen, %count), predicate = %pred : !llvm.ptr, i32, i1
nvvm.inline_ptx "mbarrier.init.b64 [{$r0}], {$r1};" ro (%barrier_gen, %count : !llvm.ptr, i32), predicate = %pred
llvm.return
}
// -----
llvm.func @ex2(%input : f32, %pred : i1) {
// CHECK: %{{.*}} = llvm.inline_asm has_side_effects asm_dialect = att "ex2.approx.ftz.f32 $0, $1;", "=f,f" %{{.*}} : (f32) -> f32
%0 = nvvm.inline_ptx "ex2.approx.ftz.f32 $0, $1;" (%input) : f32 -> f32
%0 = nvvm.inline_ptx "ex2.approx.ftz.f32 {$w0}, {$r0};" ro (%input : f32) -> f32
// CHECK: %{{.*}} = llvm.inline_asm has_side_effects asm_dialect = att "@$1 ex2.approx.ftz.f32 $0, $1;", "=f,f,b" %{{.*}}, %{{.*}} : (f32, i1) -> f32
%1 = nvvm.inline_ptx "ex2.approx.ftz.f32 $0, $1;" (%input), predicate = %pred : f32, i1 -> f32
%1 = nvvm.inline_ptx "ex2.approx.ftz.f32 {$w0}, {$r0};" ro (%input : f32), predicate = %pred -> f32
llvm.return
}
// CHECK-LABEL: @multi_return(
// CHECK-SAME: %[[arg0:[a-zA-Z0-9_]+]]: i32, %[[arg1:[a-zA-Z0-9_]+]]: i32)
llvm.func @multi_return(%a : i32, %b : i32) -> i32 {
// CHECK: %[[S1:.+]] = llvm.inline_asm has_side_effects asm_dialect = att "{\0A\09 .reg .pred p;\0A\09 setp.ge.s32 p, $2, $3;\0A\09 selp.s32 $0, $2, $3, p;\0A\09 selp.s32 $1, $2, $3, !p;\0A\09}\0A", "=r,=r,r,r" %[[arg0]], %[[arg1]] : (i32, i32) -> !llvm.struct<(i32, i32)>
// CHECK: %[[S1:.+]] = llvm.inline_asm has_side_effects asm_dialect = att "{.reg .pred p; setp.ge.s32 p, $2, $3; selp.s32 $0, $2,$3, p; selp.s32 $1, $2,$3, p;}", "=r,=r,r,r" %[[arg0]], %[[arg1]] : (i32, i32) -> !llvm.struct<(i32, i32)>
// CHECK: %[[S2:.+]] = llvm.extractvalue %[[S1]][0] : !llvm.struct<(i32, i32)>
// CHECK: %[[S3:.+]] = llvm.extractvalue %[[S1]][1] : !llvm.struct<(i32, i32)>
// CHECK: %[[S4:.+]] = llvm.add %[[S2]], %[[S3]] : i32
// CHECK: llvm.return %[[S4]] : i32
%r1, %r2 = nvvm.inline_ptx "{\n\t .reg .pred p;\n\t setp.ge.s32 p, $2, $3;\n\t selp.s32 $0, $2, $3, p;\n\t selp.s32 $1, $2, $3, !p;\n\t}\n" (%a, %b) : i32,i32 -> i32,i32
%r1, %r2 = nvvm.inline_ptx "{.reg .pred p; setp.ge.s32 p, {$r0}, {$r1}; selp.s32 {$w0}, {$r0},{$r1}, p; selp.s32 {$w1}, {$r0},{$r1}, p;}"
ro (%a, %b : i32,i32) -> i32,i32
%r3 = llvm.add %r1, %r2 : i32
llvm.return %r3 : i32
}
// CHECK-LABEL: @inline_ptx_multi_rw(
// CHECK-SAME: %[[arg0:[a-zA-Z0-9_]+]]: i32, %[[arg1:[a-zA-Z0-9_]+]]: i32, %[[arg2:[a-zA-Z0-9_]+]]: f32, %[[arg3:[a-zA-Z0-9_]+]]: f32)
llvm.func @inline_ptx_multi_rw(%a : i32, %b : i32, %rw_c : f32, %rw_d : f32) -> f32 {
// CHECK: %[[S0:.+]] = llvm.inline_asm has_side_effects asm_dialect = att "{.reg .pred p; setp.ge.s32 p, $2, $3; selp.s32 $0, $2,$3, p; selp.s32 $1, $2,$3, p;}",
// CHECK-SAME: "=f,=f,r,r,0,1"
// CHECK-SAME: %[[arg2]], %[[arg3]], %[[arg0]], %[[arg1]]
// CHECK-SAME: : (f32, f32, i32, i32) -> !llvm.struct<(f32, f32)>
// CHECK: %[[S1:.+]] = llvm.extractvalue %[[S0]][0] : !llvm.struct<(f32, f32)>
// CHECK: %[[S2:.+]] = llvm.extractvalue %[[S0]][1] : !llvm.struct<(f32, f32)>
// CHECK: %[[S3:.+]] = llvm.fadd %[[S1]], %[[S2]] : f32
// CHECK: llvm.return %[[S3]] : f32
nvvm.inline_ptx "{.reg .pred p; setp.ge.s32 p, {$r0}, {$r1}; selp.s32 {$rw0}, {$r0},{$r1}, p; selp.s32 {$rw1}, {$r0},{$r1}, p;}"
ro (%a, %b : i32,i32)
rw (%rw_c, %rw_d: f32,f32)
%r4 = llvm.fadd %rw_c, %rw_d : f32
llvm.return %r4 : f32
}
// CHECK-LABEL: @inline_ptx_multi_rw_r(
// CHECK-SAME: %[[arg0:[a-zA-Z0-9_]+]]: i32, %[[arg1:[a-zA-Z0-9_]+]]: i32, %[[arg2:[a-zA-Z0-9_]+]]: f32, %[[arg3:[a-zA-Z0-9_]+]]: f32)
llvm.func @inline_ptx_multi_rw_r(%a : i32, %b : i32, %rw_c : f32, %rw_d : f32) -> f32 {
// CHECK: %[[S0:.+]] = llvm.inline_asm has_side_effects asm_dialect = att "{.reg .pred p; setp.ge.s32 p, $4, $5; selp.s32 $0, $4,$5, p; selp.s32 $1, $4,$5, p; selp.s32 $2, $4,$5, p; selp.s32 $3, $4,$5, p;}",
// CHECK-SAME: "=f,=f,=r,=r,r,r,0,1"
// CHECK-SAME: %[[arg2]], %[[arg3]], %[[arg0]], %[[arg1]] :
// CHECK-SAME: (f32, f32, i32, i32) -> !llvm.struct<(f32, f32, i32, i32)>
// CHECK: %[[S1:.+]] = llvm.extractvalue %[[S0]][0] : !llvm.struct<(f32, f32, i32, i32)>
// CHECK: %[[S2:.+]] = llvm.extractvalue %[[S0]][1] : !llvm.struct<(f32, f32, i32, i32)>
// CHECK: %[[S3:.+]] = llvm.extractvalue %[[S0]][2] : !llvm.struct<(f32, f32, i32, i32)>
// CHECK: %[[S4:.+]] = llvm.extractvalue %[[S0]][3] : !llvm.struct<(f32, f32, i32, i32)>
// CHECK: %[[S5:.+]] = llvm.add %[[S3]], %[[S4]] : i32
// CHECK: %[[S6:.+]] = llvm.sitofp %[[S5]] : i32 to f32
// CHECK: %[[S7:.+]] = llvm.fadd %[[S1]], %[[S2]] : f32
// CHECK: %[[S8:.+]] = llvm.fadd %[[S6]], %[[S2]] : f32
// CHECK: llvm.return %[[S8]] : f32
%wo0, %wo1 = nvvm.inline_ptx "{.reg .pred p; setp.ge.s32 p, {$r0}, {$r1}; selp.s32 {$rw0}, {$r0},{$r1}, p; selp.s32 {$rw1}, {$r0},{$r1}, p; selp.s32 {$w0}, {$r0},{$r1}, p; selp.s32 {$w1}, {$r0},{$r1}, p;}"
ro (%a, %b : i32,i32)
rw (%rw_c, %rw_d: f32,f32) -> i32,i32
%r3 = llvm.add %wo0, %wo1 : i32
%r3f = llvm.sitofp %r3 : i32 to f32
%r4 = llvm.fadd %rw_c, %rw_d : f32
%r5 = llvm.fadd %r3f, %rw_d : f32
llvm.return %r5 : f32
}
// -----
// CHECK-LABEL: @nvvm_pmevent

View File

@ -5,6 +5,8 @@ from mlir.ir import *
from mlir.dialects import nvvm
from mlir.dialects import llvm
from mlir.dialects import func
import mlir.extras.types as T
from mlir.dialects import arith
def constructAndPrintInModule(f):
@ -25,6 +27,7 @@ def testSmoke():
"!llvm.struct<(f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32)>"
)
shape_attr = Attribute.parse("#nvvm.shape<m = 64, n = 32, k = 16>")
# CHECK-LABEL: func @wgmma_f32_f16_f16(%arg0: i64, %arg1: i64)
@func.FuncOp.from_py_func(i64, i64)
def wgmma_f32_f16_f16(desc_a, desc_b):
@ -48,3 +51,41 @@ def testSmoke():
layoutA=nvvm.MMALayout.col,
layoutB=nvvm.MMALayout.col,
)
# CHECK-LABEL: TEST: test_inline_ptx
# CHECK-LABEL: func.func @my_inline_ptx(
# CHECK-SAME: %[[arg0:[a-zA-Z0-9_]+]]: f32, %[[arg1:[a-zA-Z0-9_]+]]: f32, %[[arg2:[a-zA-Z0-9_]+]]: i32, %[[arg3:[a-zA-Z0-9_]+]]: i32)
# CHECK: %[[S0:.+]]:2 = nvvm.inline_ptx
# CHECK-SAME: ro(%[[arg0]], %[[arg1]] : f32, f32) rw(%[[arg2]], %[[arg3]] : i32, i32) -> f32, f32
# CHECK: %[[S1:.+]] = arith.addf %[[arg0]], %[[arg1]] : f32
# CHECK: %[[S2:.+]] = arith.addi %[[arg2]], %[[arg3]] : i32
# CHECK: %[[S3:.+]] = arith.addf %[[S0]]#0, %[[S0]]#1 : f32
@constructAndPrintInModule
def test_inline_ptx():
i32 = T.i32()
f32 = T.f32()
@func.FuncOp.from_py_func(f32, f32, i32, i32)
def my_inline_ptx(a, b, c, d):
ptx = r"""
{
.reg .pred p;
setp.ge.s32 p, {$r0}, {$r1};
selp.s32 {$r0}, {$r0}, {$r1}, p;
selp.s32 {$r1}, {$r0}, {$r1}, p;
selp.s32 {$rw0}, {$r0}, {$r1}, p;
selp.s32 {$rw1}, {$r0}, {$r1}, p;
}
"""
wo0, wo1 = nvvm.inline_ptx(
read_only_args=[a, b],
read_write_args=[c, d],
write_only_args=[f32, f32],
ptx_code=ptx,
)
arith.addf(a, b)
arith.addi(c, d)
arith.addf(wo0, wo1)