[LifetimeSafety] Implement a basic use-after-free diagnostic (#149731)

Implement use-after-free detection in the lifetime safety analysis with two warning levels.

- Added a `LifetimeSafetyReporter` interface for reporting lifetime safety issues
- Created two warning levels:
    - Definite errors (reported with `-Wexperimental-lifetime-safety-permissive`)
    - Potential errors (reported with `-Wexperimental-lifetime-safety-strict`)
- Implemented a `LifetimeChecker` class that analyzes loan propagation and expired loans to detect use-after-free issues.
- Added tracking of use sites through a new `UseFact` class.
- Enhanced the `ExpireFact` to track the expressions where objects are destroyed.
- Added test cases for both definite and potential use-after-free scenarios.

The implementation now tracks pointer uses and can determine when a pointer is dereferenced after its loan has been expired, with appropriate diagnostics.

The two warning levels provide flexibility - definite errors for high-confidence issues and potential errors for cases that depend on control flow.
This commit is contained in:
Utkarsh Saxena 2025-08-18 13:46:43 +02:00 committed by GitHub
parent c1e2a9c66d
commit 673750feea
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 592 additions and 61 deletions

View File

@ -19,14 +19,35 @@
#define LLVM_CLANG_ANALYSIS_ANALYSES_LIFETIMESAFETY_H
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/ImmutableSet.h"
#include "llvm/ADT/StringMap.h"
#include <memory>
namespace clang::lifetimes {
/// Enum to track the confidence level of a potential error.
enum class Confidence {
None,
Maybe, // Reported as a potential error (-Wlifetime-safety-strict)
Definite // Reported as a definite error (-Wlifetime-safety-permissive)
};
class LifetimeSafetyReporter {
public:
LifetimeSafetyReporter() = default;
virtual ~LifetimeSafetyReporter() = default;
virtual void reportUseAfterFree(const Expr *IssueExpr, const Expr *UseExpr,
SourceLocation FreeLoc,
Confidence Confidence) {}
};
/// The main entry point for the analysis.
void runLifetimeSafetyAnalysis(AnalysisDeclContext &AC);
void runLifetimeSafetyAnalysis(AnalysisDeclContext &AC,
LifetimeSafetyReporter *Reporter);
namespace internal {
// Forward declarations of internal types.
@ -53,6 +74,7 @@ template <typename Tag> struct ID {
IDBuilder.AddInteger(Value);
}
};
template <typename Tag>
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ID<Tag> ID) {
return OS << ID.Value;
@ -78,7 +100,8 @@ using ProgramPoint = const Fact *;
/// encapsulates the various dataflow analyses.
class LifetimeSafetyAnalysis {
public:
LifetimeSafetyAnalysis(AnalysisDeclContext &AC);
LifetimeSafetyAnalysis(AnalysisDeclContext &AC,
LifetimeSafetyReporter *Reporter);
~LifetimeSafetyAnalysis();
void run();
@ -87,7 +110,7 @@ public:
LoanSet getLoansAtPoint(OriginID OID, ProgramPoint PP) const;
/// Returns the set of loans that have expired at a specific program point.
LoanSet getExpiredLoansAtPoint(ProgramPoint PP) const;
std::vector<LoanID> getExpiredLoansAtPoint(ProgramPoint PP) const;
/// Finds the OriginID for a given declaration.
/// Returns a null optional if not found.
@ -110,6 +133,7 @@ public:
private:
AnalysisDeclContext &AC;
LifetimeSafetyReporter *Reporter;
std::unique_ptr<LifetimeFactory> Factory;
std::unique_ptr<FactManager> FactMgr;
std::unique_ptr<LoanPropagationAnalysis> LoanPropagation;
@ -118,4 +142,25 @@ private:
} // namespace internal
} // namespace clang::lifetimes
namespace llvm {
template <typename Tag>
struct DenseMapInfo<clang::lifetimes::internal::ID<Tag>> {
using ID = clang::lifetimes::internal::ID<Tag>;
static inline ID getEmptyKey() {
return {DenseMapInfo<uint32_t>::getEmptyKey()};
}
static inline ID getTombstoneKey() {
return {DenseMapInfo<uint32_t>::getTombstoneKey()};
}
static unsigned getHashValue(const ID &Val) {
return DenseMapInfo<uint32_t>::getHashValue(Val.Value);
}
static bool isEqual(const ID &LHS, const ID &RHS) { return LHS == RHS; }
};
} // namespace llvm
#endif // LLVM_CLANG_ANALYSIS_ANALYSES_LIFETIMESAFETY_H

View File

@ -533,7 +533,14 @@ def Dangling : DiagGroup<"dangling", [DanglingAssignment,
DanglingGsl,
ReturnStackAddress]>;
def LifetimeSafety : DiagGroup<"experimental-lifetime-safety">;
def LifetimeSafetyPermissive : DiagGroup<"experimental-lifetime-safety-permissive">;
def LifetimeSafetyStrict : DiagGroup<"experimental-lifetime-safety-strict">;
def LifetimeSafety : DiagGroup<"experimental-lifetime-safety",
[LifetimeSafetyPermissive, LifetimeSafetyStrict]> {
code Documentation = [{
Experimental warnings to detect use-after-free and related temporal safety bugs based on lifetime safety analysis.
}];
}
def DistributedObjectModifiers : DiagGroup<"distributed-object-modifiers">;
def DllexportExplicitInstantiationDecl : DiagGroup<"dllexport-explicit-instantiation-decl">;

View File

@ -10671,9 +10671,15 @@ def warn_dangling_reference_captured_by_unknown : Warning<
"object whose reference is captured will be destroyed at the end of "
"the full-expression">, InGroup<DanglingCapture>;
def warn_experimental_lifetime_safety_dummy_warning : Warning<
"todo: remove this warning after we have atleast one warning based on the lifetime analysis">,
InGroup<LifetimeSafety>, DefaultIgnore;
// Diagnostics based on the Lifetime safety analysis.
def warn_lifetime_safety_loan_expires_permissive : Warning<
"object whose reference is captured does not live long enough">,
InGroup<LifetimeSafetyPermissive>, DefaultIgnore;
def warn_lifetime_safety_loan_expires_strict : Warning<
"object whose reference is captured may not live long enough">,
InGroup<LifetimeSafetyStrict>, DefaultIgnore;
def note_lifetime_safety_used_here : Note<"later used here">;
def note_lifetime_safety_destroyed_here : Note<"destroyed here">;
// For non-floating point, expressions of the form x == x or x != x
// should result in a warning, since these always evaluate to a constant.

View File

@ -45,10 +45,11 @@ struct Loan {
/// is represented as empty LoanSet
LoanID ID;
AccessPath Path;
SourceLocation IssueLoc;
/// The expression that creates the loan, e.g., &x.
const Expr *IssueExpr;
Loan(LoanID id, AccessPath path, SourceLocation loc)
: ID(id), Path(path), IssueLoc(loc) {}
Loan(LoanID id, AccessPath path, const Expr *IssueExpr)
: ID(id), Path(path), IssueExpr(IssueExpr) {}
};
/// An Origin is a symbolic identifier that represents the set of possible
@ -82,8 +83,8 @@ class LoanManager {
public:
LoanManager() = default;
Loan &addLoan(AccessPath Path, SourceLocation Loc) {
AllLoans.emplace_back(getNextLoanID(), Path, Loc);
Loan &addLoan(AccessPath Path, const Expr *IssueExpr) {
AllLoans.emplace_back(getNextLoanID(), Path, IssueExpr);
return AllLoans.back();
}
@ -199,6 +200,8 @@ public:
AssignOrigin,
/// An origin escapes the function by flowing into the return value.
ReturnOfOrigin,
/// An origin is used (eg. dereferencing a pointer).
Use,
/// A marker for a specific point in the code, for testing.
TestPoint,
};
@ -242,12 +245,17 @@ public:
class ExpireFact : public Fact {
LoanID LID;
SourceLocation ExpiryLoc;
public:
static bool classof(const Fact *F) { return F->getKind() == Kind::Expire; }
ExpireFact(LoanID LID) : Fact(Kind::Expire), LID(LID) {}
ExpireFact(LoanID LID, SourceLocation ExpiryLoc)
: Fact(Kind::Expire), LID(LID), ExpiryLoc(ExpiryLoc) {}
LoanID getLoanID() const { return LID; }
SourceLocation getExpiryLoc() const { return ExpiryLoc; }
void dump(llvm::raw_ostream &OS) const override {
OS << "Expire (LoanID: " << getLoanID() << ")\n";
}
@ -287,6 +295,24 @@ public:
}
};
class UseFact : public Fact {
OriginID UsedOrigin;
const Expr *UseExpr;
public:
static bool classof(const Fact *F) { return F->getKind() == Kind::Use; }
UseFact(OriginID UsedOrigin, const Expr *UseExpr)
: Fact(Kind::Use), UsedOrigin(UsedOrigin), UseExpr(UseExpr) {}
OriginID getUsedOrigin() const { return UsedOrigin; }
const Expr *getUseExpr() const { return UseExpr; }
void dump(llvm::raw_ostream &OS) const override {
OS << "Use (OriginID: " << UsedOrigin << ")\n";
}
};
/// A dummy-fact used to mark a specific point in the code for testing.
/// It is generated by recognizing a `void("__lifetime_test_point_...")` cast.
class TestPointFact : public Fact {
@ -417,13 +443,17 @@ public:
if (VD->hasLocalStorage()) {
OriginID OID = FactMgr.getOriginMgr().getOrCreate(*UO);
AccessPath AddrOfLocalVarPath(VD);
const Loan &L = FactMgr.getLoanMgr().addLoan(AddrOfLocalVarPath,
UO->getOperatorLoc());
const Loan &L =
FactMgr.getLoanMgr().addLoan(AddrOfLocalVarPath, UO);
CurrentBlockFacts.push_back(
FactMgr.createFact<IssueFact>(L.ID, OID));
}
}
}
} else if (UO->getOpcode() == UO_Deref) {
// This is a pointer use, like '*p'.
OriginID OID = FactMgr.getOriginMgr().get(*UO->getSubExpr());
CurrentBlockFacts.push_back(FactMgr.createFact<UseFact>(OID, UO));
}
}
@ -492,7 +522,8 @@ private:
// Check if the loan is for a stack variable and if that variable
// is the one being destructed.
if (LoanPath.D == DestructedVD)
CurrentBlockFacts.push_back(FactMgr.createFact<ExpireFact>(L.ID));
CurrentBlockFacts.push_back(FactMgr.createFact<ExpireFact>(
L.ID, DtorOpt.getTriggerStmt()->getEndLoc()));
}
}
@ -618,6 +649,7 @@ public:
}
}
protected:
Lattice getState(ProgramPoint P) const { return PerPointStates.lookup(P); }
Lattice getInState(const CFGBlock *B) const { return InStates.lookup(B); }
@ -665,6 +697,8 @@ private:
return D->transfer(In, *F->getAs<AssignOriginFact>());
case Fact::Kind::ReturnOfOrigin:
return D->transfer(In, *F->getAs<ReturnOfOriginFact>());
case Fact::Kind::Use:
return D->transfer(In, *F->getAs<UseFact>());
case Fact::Kind::TestPoint:
return D->transfer(In, *F->getAs<TestPointFact>());
}
@ -676,6 +710,7 @@ public:
Lattice transfer(Lattice In, const ExpireFact &) { return In; }
Lattice transfer(Lattice In, const AssignOriginFact &) { return In; }
Lattice transfer(Lattice In, const ReturnOfOriginFact &) { return In; }
Lattice transfer(Lattice In, const UseFact &) { return In; }
Lattice transfer(Lattice In, const TestPointFact &) { return In; }
};
@ -693,6 +728,20 @@ static llvm::ImmutableSet<T> join(llvm::ImmutableSet<T> A,
return A;
}
/// Checks if set A is a subset of set B.
template <typename T>
static bool isSubsetOf(const llvm::ImmutableSet<T> &A,
const llvm::ImmutableSet<T> &B) {
// Empty set is a subset of all sets.
if (A.isEmpty())
return true;
for (const T &Elem : A)
if (!B.contains(Elem))
return false;
return true;
}
/// Computes the key-wise union of two ImmutableMaps.
// TODO(opt): This key-wise join is a performance bottleneck. A more
// efficient merge could be implemented using a Patricia Trie or HAMT
@ -700,7 +749,7 @@ static llvm::ImmutableSet<T> join(llvm::ImmutableSet<T> A,
template <typename K, typename V, typename Joiner>
static llvm::ImmutableMap<K, V>
join(llvm::ImmutableMap<K, V> A, llvm::ImmutableMap<K, V> B,
typename llvm::ImmutableMap<K, V>::Factory &F, Joiner joinValues) {
typename llvm::ImmutableMap<K, V>::Factory &F, Joiner JoinValues) {
if (A.getHeight() < B.getHeight())
std::swap(A, B);
@ -710,7 +759,7 @@ join(llvm::ImmutableMap<K, V> A, llvm::ImmutableMap<K, V> B,
const K &Key = Entry.first;
const V &ValB = Entry.second;
if (const V *ValA = A.lookup(Key))
A = F.add(A, Key, joinValues(*ValA, ValB));
A = F.add(A, Key, JoinValues(*ValA, ValB));
else
A = F.add(A, Key, ValB);
}
@ -723,17 +772,14 @@ join(llvm::ImmutableMap<K, V> A, llvm::ImmutableMap<K, V> B,
// ========================================================================= //
using OriginLoanMap = llvm::ImmutableMap<OriginID, LoanSet>;
using ExpiredLoanMap = llvm::ImmutableMap<LoanID, const ExpireFact *>;
/// An object to hold the factories for immutable collections, ensuring
/// that all created states share the same underlying memory management.
struct LifetimeFactory {
OriginLoanMap::Factory OriginMapFactory;
LoanSet::Factory LoanSetFactory;
/// Creates a singleton set containing only the given loan ID.
LoanSet createLoanSet(LoanID LID) {
return LoanSetFactory.add(LoanSetFactory.getEmptySet(), LID);
}
ExpiredLoanMap::Factory ExpiredLoanMapFactory;
};
/// Represents the dataflow lattice for loan propagation.
@ -774,13 +820,15 @@ struct LoanPropagationLattice {
class LoanPropagationAnalysis
: public DataflowAnalysis<LoanPropagationAnalysis, LoanPropagationLattice,
Direction::Forward> {
LifetimeFactory &Factory;
OriginLoanMap::Factory &OriginLoanMapFactory;
LoanSet::Factory &LoanSetFactory;
public:
LoanPropagationAnalysis(const CFG &C, AnalysisDeclContext &AC, FactManager &F,
LifetimeFactory &Factory)
: DataflowAnalysis(C, AC, F), Factory(Factory) {}
LifetimeFactory &LFactory)
: DataflowAnalysis(C, AC, F),
OriginLoanMapFactory(LFactory.OriginMapFactory),
LoanSetFactory(LFactory.LoanSetFactory) {}
using Base::transfer;
@ -792,9 +840,9 @@ public:
// TODO(opt): Keep the state small by removing origins which become dead.
Lattice join(Lattice A, Lattice B) {
OriginLoanMap JoinedOrigins =
utils::join(A.Origins, B.Origins, Factory.OriginMapFactory,
[this](LoanSet S1, LoanSet S2) {
return utils::join(S1, S2, Factory.LoanSetFactory);
utils::join(A.Origins, B.Origins, OriginLoanMapFactory,
[&](LoanSet S1, LoanSet S2) {
return utils::join(S1, S2, LoanSetFactory);
});
return Lattice(JoinedOrigins);
}
@ -803,8 +851,9 @@ public:
Lattice transfer(Lattice In, const IssueFact &F) {
OriginID OID = F.getOriginID();
LoanID LID = F.getLoanID();
return LoanPropagationLattice(Factory.OriginMapFactory.add(
In.Origins, OID, Factory.createLoanSet(LID)));
return LoanPropagationLattice(OriginLoanMapFactory.add(
In.Origins, OID,
LoanSetFactory.add(LoanSetFactory.getEmptySet(), LID)));
}
/// The destination origin's loan set is replaced by the source's.
@ -814,7 +863,7 @@ public:
OriginID SrcOID = F.getSrcOriginID();
LoanSet SrcLoans = getLoans(In, SrcOID);
return LoanPropagationLattice(
Factory.OriginMapFactory.add(In.Origins, DestOID, SrcLoans));
OriginLoanMapFactory.add(In.Origins, DestOID, SrcLoans));
}
LoanSet getLoans(OriginID OID, ProgramPoint P) {
@ -825,7 +874,7 @@ private:
LoanSet getLoans(Lattice L, OriginID OID) {
if (auto *Loans = L.Origins.lookup(OID))
return *Loans;
return Factory.LoanSetFactory.getEmptySet();
return LoanSetFactory.getEmptySet();
}
};
@ -835,10 +884,11 @@ private:
/// The dataflow lattice for tracking the set of expired loans.
struct ExpiredLattice {
LoanSet Expired;
/// Map from an expired `LoanID` to the `ExpireFact` that made it expire.
ExpiredLoanMap Expired;
ExpiredLattice() : Expired(nullptr) {};
explicit ExpiredLattice(LoanSet S) : Expired(S) {}
explicit ExpiredLattice(ExpiredLoanMap M) : Expired(M) {}
bool operator==(const ExpiredLattice &Other) const {
return Expired == Other.Expired;
@ -851,8 +901,8 @@ struct ExpiredLattice {
OS << "ExpiredLattice State:\n";
if (Expired.isEmpty())
OS << " <empty>\n";
for (const LoanID &LID : Expired)
OS << " Loan " << LID << " is expired\n";
for (const auto &[ID, _] : Expired)
OS << " Loan " << ID << " is expired\n";
}
};
@ -861,26 +911,31 @@ class ExpiredLoansAnalysis
: public DataflowAnalysis<ExpiredLoansAnalysis, ExpiredLattice,
Direction::Forward> {
LoanSet::Factory &Factory;
ExpiredLoanMap::Factory &Factory;
public:
ExpiredLoansAnalysis(const CFG &C, AnalysisDeclContext &AC, FactManager &F,
LifetimeFactory &Factory)
: DataflowAnalysis(C, AC, F), Factory(Factory.LoanSetFactory) {}
: DataflowAnalysis(C, AC, F), Factory(Factory.ExpiredLoanMapFactory) {}
using Base::transfer;
StringRef getAnalysisName() const { return "ExpiredLoans"; }
Lattice getInitialState() { return Lattice(Factory.getEmptySet()); }
Lattice getInitialState() { return Lattice(Factory.getEmptyMap()); }
/// Merges two lattices by taking the union of the expired loan sets.
Lattice join(Lattice L1, Lattice L2) const {
return Lattice(utils::join(L1.Expired, L2.Expired, Factory));
/// Merges two lattices by taking the union of the two expired loans.
Lattice join(Lattice L1, Lattice L2) {
return Lattice(
utils::join(L1.Expired, L2.Expired, Factory,
// Take the last expiry fact to make this hermetic.
[](const ExpireFact *F1, const ExpireFact *F2) {
return F1->getExpiryLoc() > F2->getExpiryLoc() ? F1 : F2;
}));
}
Lattice transfer(Lattice In, const ExpireFact &F) {
return Lattice(Factory.add(In.Expired, F.getLoanID()));
return Lattice(Factory.add(In.Expired, F.getLoanID(), &F));
}
// Removes the loan from the set of expired loans.
@ -912,15 +967,116 @@ public:
Lattice transfer(Lattice In, const IssueFact &F) {
return Lattice(Factory.remove(In.Expired, F.getLoanID()));
}
ExpiredLoanMap getExpiredLoans(ProgramPoint P) { return getState(P).Expired; }
};
// ========================================================================= //
// TODO:
// - Modify loan expiry analysis to answer `bool isExpired(Loan L, Point P)`
// - Modify origin liveness analysis to answer `bool isLive(Origin O, Point P)`
// - Using the above three to perform the final error reporting.
// Lifetime checker and Error reporter
// ========================================================================= //
/// Struct to store the complete context for a potential lifetime violation.
struct PendingWarning {
SourceLocation ExpiryLoc; // Where the loan expired.
const Expr *UseExpr; // Where the origin holding this loan was used.
Confidence ConfidenceLevel;
};
class LifetimeChecker {
private:
llvm::DenseMap<LoanID, PendingWarning> FinalWarningsMap;
LoanPropagationAnalysis &LoanPropagation;
ExpiredLoansAnalysis &ExpiredLoans;
FactManager &FactMgr;
AnalysisDeclContext &ADC;
LifetimeSafetyReporter *Reporter;
public:
LifetimeChecker(LoanPropagationAnalysis &LPA, ExpiredLoansAnalysis &ELA,
FactManager &FM, AnalysisDeclContext &ADC,
LifetimeSafetyReporter *Reporter)
: LoanPropagation(LPA), ExpiredLoans(ELA), FactMgr(FM), ADC(ADC),
Reporter(Reporter) {}
void run() {
llvm::TimeTraceScope TimeProfile("LifetimeChecker");
for (const CFGBlock *B : *ADC.getAnalysis<PostOrderCFGView>())
for (const Fact *F : FactMgr.getFacts(B))
if (const auto *UF = F->getAs<UseFact>())
checkUse(UF);
issuePendingWarnings();
}
/// Checks for use-after-free errors for a given use of an Origin.
///
/// This method is called for each 'UseFact' identified in the control flow
/// graph. It determines if the loans held by the used origin have expired
/// at the point of use.
void checkUse(const UseFact *UF) {
OriginID O = UF->getUsedOrigin();
// Get the set of loans that the origin might hold at this program point.
LoanSet HeldLoans = LoanPropagation.getLoans(O, UF);
// Get the set of all loans that have expired at this program point.
ExpiredLoanMap AllExpiredLoans = ExpiredLoans.getExpiredLoans(UF);
// If the pointer holds no loans or no loans have expired, there's nothing
// to check.
if (HeldLoans.isEmpty() || AllExpiredLoans.isEmpty())
return;
// Identify loans that which have expired but are held by the pointer. Using
// them is a use-after-free.
llvm::SmallVector<LoanID> DefaultedLoans;
// A definite UaF error occurs if all loans the origin might hold have
// expired.
bool IsDefiniteError = true;
for (LoanID L : HeldLoans) {
if (AllExpiredLoans.contains(L))
DefaultedLoans.push_back(L);
else
// If at least one loan is not expired, this use is not a definite UaF.
IsDefiniteError = false;
}
// If there are no defaulted loans, the use is safe.
if (DefaultedLoans.empty())
return;
// Determine the confidence level of the error (definite or maybe).
Confidence CurrentConfidence =
IsDefiniteError ? Confidence::Definite : Confidence::Maybe;
// For each expired loan, create a pending warning.
for (LoanID DefaultedLoan : DefaultedLoans) {
// If we already have a warning for this loan with a higher or equal
// confidence, skip this one.
if (FinalWarningsMap.count(DefaultedLoan) &&
CurrentConfidence <= FinalWarningsMap[DefaultedLoan].ConfidenceLevel)
continue;
auto *EF = AllExpiredLoans.lookup(DefaultedLoan);
assert(EF && "Could not find ExpireFact for an expired loan.");
FinalWarningsMap[DefaultedLoan] = {/*ExpiryLoc=*/(*EF)->getExpiryLoc(),
/*UseExpr=*/UF->getUseExpr(),
/*ConfidenceLevel=*/CurrentConfidence};
}
}
void issuePendingWarnings() {
if (!Reporter)
return;
for (const auto &[LID, Warning] : FinalWarningsMap) {
const Loan &L = FactMgr.getLoanMgr().getLoan(LID);
const Expr *IssueExpr = L.IssueExpr;
Reporter->reportUseAfterFree(IssueExpr, Warning.UseExpr,
Warning.ExpiryLoc, Warning.ConfidenceLevel);
}
}
};
// ========================================================================= //
// LifetimeSafetyAnalysis Class Implementation
// ========================================================================= //
@ -928,8 +1084,9 @@ public:
// We need this here for unique_ptr with forward declared class.
LifetimeSafetyAnalysis::~LifetimeSafetyAnalysis() = default;
LifetimeSafetyAnalysis::LifetimeSafetyAnalysis(AnalysisDeclContext &AC)
: AC(AC), Factory(std::make_unique<LifetimeFactory>()),
LifetimeSafetyAnalysis::LifetimeSafetyAnalysis(AnalysisDeclContext &AC,
LifetimeSafetyReporter *Reporter)
: AC(AC), Reporter(Reporter), Factory(std::make_unique<LifetimeFactory>()),
FactMgr(std::make_unique<FactManager>()) {}
void LifetimeSafetyAnalysis::run() {
@ -952,6 +1109,8 @@ void LifetimeSafetyAnalysis::run() {
/// blocks; only Decls are visible. Therefore, loans in a block that
/// never reach an Origin associated with a Decl can be safely dropped by
/// the analysis.
/// 3. Collapse ExpireFacts belonging to same source location into a single
/// Fact.
LoanPropagation =
std::make_unique<LoanPropagationAnalysis>(Cfg, AC, *FactMgr, *Factory);
LoanPropagation->run();
@ -959,6 +1118,10 @@ void LifetimeSafetyAnalysis::run() {
ExpiredLoans =
std::make_unique<ExpiredLoansAnalysis>(Cfg, AC, *FactMgr, *Factory);
ExpiredLoans->run();
LifetimeChecker Checker(*LoanPropagation, *ExpiredLoans, *FactMgr, AC,
Reporter);
Checker.run();
}
LoanSet LifetimeSafetyAnalysis::getLoansAtPoint(OriginID OID,
@ -967,9 +1130,13 @@ LoanSet LifetimeSafetyAnalysis::getLoansAtPoint(OriginID OID,
return LoanPropagation->getLoans(OID, PP);
}
LoanSet LifetimeSafetyAnalysis::getExpiredLoansAtPoint(ProgramPoint PP) const {
std::vector<LoanID>
LifetimeSafetyAnalysis::getExpiredLoansAtPoint(ProgramPoint PP) const {
assert(ExpiredLoans && "ExpiredLoansAnalysis has not been run.");
return ExpiredLoans->getState(PP).Expired;
std::vector<LoanID> Result;
for (const auto &pair : ExpiredLoans->getExpiredLoans(PP))
Result.push_back(pair.first);
return Result;
}
std::optional<OriginID>
@ -1009,8 +1176,9 @@ llvm::StringMap<ProgramPoint> LifetimeSafetyAnalysis::getTestPoints() const {
}
} // namespace internal
void runLifetimeSafetyAnalysis(AnalysisDeclContext &AC) {
internal::LifetimeSafetyAnalysis Analysis(AC);
void runLifetimeSafetyAnalysis(AnalysisDeclContext &AC,
LifetimeSafetyReporter *Reporter) {
internal::LifetimeSafetyAnalysis Analysis(AC, Reporter);
Analysis.run();
}
} // namespace clang::lifetimes

View File

@ -2780,6 +2780,31 @@ public:
}
};
namespace clang::lifetimes {
namespace {
class LifetimeSafetyReporterImpl : public LifetimeSafetyReporter {
public:
LifetimeSafetyReporterImpl(Sema &S) : S(S) {}
void reportUseAfterFree(const Expr *IssueExpr, const Expr *UseExpr,
SourceLocation FreeLoc, Confidence C) override {
S.Diag(IssueExpr->getExprLoc(),
C == Confidence::Definite
? diag::warn_lifetime_safety_loan_expires_permissive
: diag::warn_lifetime_safety_loan_expires_strict)
<< IssueExpr->getEndLoc();
S.Diag(FreeLoc, diag::note_lifetime_safety_destroyed_here);
S.Diag(UseExpr->getExprLoc(), diag::note_lifetime_safety_used_here)
<< UseExpr->getEndLoc();
}
private:
Sema &S;
};
} // namespace
} // namespace clang::lifetimes
void clang::sema::AnalysisBasedWarnings::IssueWarnings(
TranslationUnitDecl *TU) {
if (!TU)
@ -3029,8 +3054,10 @@ void clang::sema::AnalysisBasedWarnings::IssueWarnings(
// TODO: Enable lifetime safety analysis for other languages once it is
// stable.
if (EnableLifetimeSafetyAnalysis && S.getLangOpts().CPlusPlus) {
if (AC.getCFG())
lifetimes::runLifetimeSafetyAnalysis(AC);
if (AC.getCFG()) {
lifetimes::LifetimeSafetyReporterImpl LifetimeSafetyReporter(S);
lifetimes::runLifetimeSafetyAnalysis(AC, &LifetimeSafetyReporter);
}
}
// Check for violations of "called once" parameter properties.
if (S.getLangOpts().ObjC && !S.getLangOpts().CPlusPlus &&

View File

@ -0,0 +1,273 @@
// RUN: %clang_cc1 -fsyntax-only -fexperimental-lifetime-safety -Wexperimental-lifetime-safety -verify %s
struct MyObj {
int id;
~MyObj() {} // Non-trivial destructor
MyObj operator+(MyObj);
};
//===----------------------------------------------------------------------===//
// Basic Definite Use-After-Free (-W...permissive)
// These are cases where the pointer is guaranteed to be dangling at the use site.
//===----------------------------------------------------------------------===//
void definite_simple_case() {
MyObj* p;
{
MyObj s;
p = &s; // expected-warning {{object whose reference is captured does not live long enough}}
} // expected-note {{destroyed here}}
(void)*p; // expected-note {{later used here}}
}
void no_use_no_error() {
MyObj* p;
{
MyObj s;
p = &s;
}
}
void definite_pointer_chain() {
MyObj* p;
MyObj* q;
{
MyObj s;
p = &s; // expected-warning {{does not live long enough}}
q = p;
} // expected-note {{destroyed here}}
(void)*q; // expected-note {{later used here}}
}
void definite_multiple_uses_one_warning() {
MyObj* p;
{
MyObj s;
p = &s; // expected-warning {{does not live long enough}}
} // expected-note {{destroyed here}}
(void)*p; // expected-note {{later used here}}
// No second warning for the same loan.
p->id = 1;
MyObj* q = p;
(void)*q;
}
void definite_multiple_pointers() {
MyObj *p, *q, *r;
{
MyObj s;
p = &s; // expected-warning {{does not live long enough}}
q = &s; // expected-warning {{does not live long enough}}
r = &s; // expected-warning {{does not live long enough}}
} // expected-note 3 {{destroyed here}}
(void)*p; // expected-note {{later used here}}
(void)*q; // expected-note {{later used here}}
(void)*r; // expected-note {{later used here}}
}
void definite_single_pointer_multiple_loans(bool cond) {
MyObj *p;
if (cond){
MyObj s;
p = &s; // expected-warning {{does not live long enough}}
} // expected-note {{destroyed here}}
else {
MyObj t;
p = &t; // expected-warning {{does not live long enough}}
} // expected-note {{destroyed here}}
(void)*p; // expected-note 2 {{later used here}}
}
//===----------------------------------------------------------------------===//
// Potential (Maybe) Use-After-Free (-W...strict)
// These are cases where the pointer *may* become dangling, depending on the path taken.
//===----------------------------------------------------------------------===//
void potential_if_branch(bool cond) {
MyObj safe;
MyObj* p = &safe;
if (cond) {
MyObj temp;
p = &temp; // expected-warning {{object whose reference is captured may not live long enough}}
} // expected-note {{destroyed here}}
(void)*p; // expected-note {{later used here}}
}
// If all paths lead to a dangle, it becomes a definite error.
void potential_becomes_definite(bool cond) {
MyObj* p;
if (cond) {
MyObj temp1;
p = &temp1; // expected-warning {{does not live long enough}}
} // expected-note {{destroyed here}}
else {
MyObj temp2;
p = &temp2; // expected-warning {{does not live long enough}}
} // expected-note {{destroyed here}}
(void)*p; // expected-note 2 {{later used here}}
}
void definite_potential_together(bool cond) {
MyObj safe;
MyObj* p_maybe = &safe;
MyObj* p_definite = nullptr;
{
MyObj s;
p_definite = &s; // expected-warning {{does not live long enough}}
if (cond) {
p_maybe = &s; // expected-warning {{may not live long enough}}
}
} // expected-note 2 {{destroyed here}}
(void)*p_definite; // expected-note {{later used here}}
(void)*p_maybe; // expected-note {{later used here}}
}
void definite_overrides_potential(bool cond) {
MyObj safe;
MyObj* p;
MyObj* q;
{
MyObj s;
q = &s; // expected-warning {{does not live long enough}}
p = q;
} // expected-note {{destroyed here}}
if (cond) {
// 'q' is conditionally "rescued". 'p' is not.
q = &safe;
}
// The use of 'p' is a definite error because it was never rescued.
(void)*q;
(void)*p; // expected-note {{later used here}}
(void)*q;
}
//===----------------------------------------------------------------------===//
// Control Flow Tests
//===----------------------------------------------------------------------===//
void potential_for_loop_use_after_loop_body(MyObj safe) {
MyObj* p = &safe;
for (int i = 0; i < 1; ++i) {
MyObj s;
p = &s; // expected-warning {{may not live long enough}}
} // expected-note {{destroyed here}}
(void)*p; // expected-note {{later used here}}
}
void potential_for_loop_use_before_loop_body(MyObj safe) {
MyObj* p = &safe;
for (int i = 0; i < 1; ++i) {
(void)*p; // expected-note {{later used here}}
MyObj s;
p = &s; // expected-warning {{may not live long enough}}
} // expected-note {{destroyed here}}
(void)*p;
}
void potential_loop_with_break(bool cond) {
MyObj safe;
MyObj* p = &safe;
for (int i = 0; i < 10; ++i) {
if (cond) {
MyObj temp;
p = &temp; // expected-warning {{may not live long enough}}
break; // expected-note {{destroyed here}}
}
}
(void)*p; // expected-note {{later used here}}
}
void potential_multiple_expiry_of_same_loan(bool cond) {
// Choose the last expiry location for the loan.
MyObj safe;
MyObj* p = &safe;
for (int i = 0; i < 10; ++i) {
MyObj unsafe;
if (cond) {
p = &unsafe; // expected-warning {{may not live long enough}}
break;
}
} // expected-note {{destroyed here}}
(void)*p; // expected-note {{later used here}}
p = &safe;
for (int i = 0; i < 10; ++i) {
MyObj unsafe;
if (cond) {
p = &unsafe; // expected-warning {{may not live long enough}}
if (cond)
break;
}
} // expected-note {{destroyed here}}
(void)*p; // expected-note {{later used here}}
p = &safe;
for (int i = 0; i < 10; ++i) {
if (cond) {
MyObj unsafe2;
p = &unsafe2; // expected-warning {{may not live long enough}}
break; // expected-note {{destroyed here}}
}
}
(void)*p; // expected-note {{later used here}}
}
void potential_switch(int mode) {
MyObj safe;
MyObj* p = &safe;
switch (mode) {
case 1: {
MyObj temp;
p = &temp; // expected-warning {{object whose reference is captured may not live long enough}}
break; // expected-note {{destroyed here}}
}
case 2: {
p = &safe; // This path is okay.
break;
}
}
(void)*p; // expected-note {{later used here}}
}
void definite_switch(int mode) {
MyObj safe;
MyObj* p = &safe;
// All cases are UaF --> Definite error.
switch (mode) {
case 1: {
MyObj temp1;
p = &temp1; // expected-warning {{does not live long enough}}
break; // expected-note {{destroyed here}}
}
case 2: {
MyObj temp2;
p = &temp2; // expected-warning {{does not live long enough}}
break; // expected-note {{destroyed here}}
}
default: {
MyObj temp2;
p = &temp2; // expected-warning {{does not live long enough}}
break; // expected-note {{destroyed here}}
}
}
(void)*p; // expected-note 3 {{later used here}}
}
//===----------------------------------------------------------------------===//
// No-Error Cases
//===----------------------------------------------------------------------===//
void no_error_if_dangle_then_rescue() {
MyObj safe;
MyObj* p;
{
MyObj temp;
p = &temp; // p is temporarily dangling.
}
p = &safe; // p is "rescued" before use.
(void)*p; // This is safe.
}

View File

@ -33,7 +33,9 @@ public:
)";
FullCode += Code.str();
AST = std::make_unique<clang::TestAST>(FullCode);
Inputs = TestInputs(FullCode);
Inputs.Language = TestLanguage::Lang_CXX20;
AST = std::make_unique<clang::TestAST>(Inputs);
ASTCtx = &AST->context();
// Find the target function using AST matchers.
@ -51,7 +53,7 @@ public:
BuildOptions.AddTemporaryDtors = true;
// Run the main analysis.
Analysis = std::make_unique<LifetimeSafetyAnalysis>(*AnalysisCtx);
Analysis = std::make_unique<LifetimeSafetyAnalysis>(*AnalysisCtx, nullptr);
Analysis->run();
AnnotationToPointMap = Analysis->getTestPoints();
@ -70,6 +72,7 @@ public:
}
private:
TestInputs Inputs;
std::unique_ptr<TestAST> AST;
ASTContext *ASTCtx = nullptr;
std::unique_ptr<AnalysisDeclContext> AnalysisCtx;
@ -118,11 +121,13 @@ public:
return Analysis.getLoansAtPoint(OID, PP);
}
std::optional<LoanSet> getExpiredLoansAtPoint(llvm::StringRef Annotation) {
std::optional<llvm::DenseSet<LoanID>>
getExpiredLoansAtPoint(llvm::StringRef Annotation) {
ProgramPoint PP = Runner.getProgramPoint(Annotation);
if (!PP)
return std::nullopt;
return Analysis.getExpiredLoansAtPoint(PP);
auto Expired = Analysis.getExpiredLoansAtPoint(PP);
return llvm::DenseSet<LoanID>{Expired.begin(), Expired.end()};
}
private: