[flang] Allow to pass an async id to allocate the descriptor (#118713)

This is a patch in preparation for the support stream ordered memory
allocator in CUDA Fortran.

This patch adds an asynchronous id to the AllocatableAllocate runtime
function and to Descriptor::Allocate so it can be passed down to the
registered allocator. It is up to the allocator to use this value or
not.

A follow up patch will implement that asynchronous allocator for CUDA
Fortran.
This commit is contained in:
Valentin Clement (バレンタイン クレメン) 2024-12-04 18:24:40 -08:00 committed by GitHub
parent 970d6d2096
commit 7d1c661381
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
22 changed files with 88 additions and 64 deletions

View File

@ -19,16 +19,16 @@ extern "C" {
void RTDECL(CUFRegisterAllocator)(); void RTDECL(CUFRegisterAllocator)();
} }
void *CUFAllocPinned(std::size_t); void *CUFAllocPinned(std::size_t, std::int64_t);
void CUFFreePinned(void *); void CUFFreePinned(void *);
void *CUFAllocDevice(std::size_t); void *CUFAllocDevice(std::size_t, std::int64_t);
void CUFFreeDevice(void *); void CUFFreeDevice(void *);
void *CUFAllocManaged(std::size_t); void *CUFAllocManaged(std::size_t, std::int64_t);
void CUFFreeManaged(void *); void CUFFreeManaged(void *);
void *CUFAllocUnified(std::size_t); void *CUFAllocUnified(std::size_t, std::int64_t);
void CUFFreeUnified(void *); void CUFFreeUnified(void *);
} // namespace Fortran::runtime::cuda } // namespace Fortran::runtime::cuda

View File

@ -23,6 +23,9 @@ static constexpr unsigned kHostToDevice = 0;
static constexpr unsigned kDeviceToHost = 1; static constexpr unsigned kDeviceToHost = 1;
static constexpr unsigned kDeviceToDevice = 2; static constexpr unsigned kDeviceToDevice = 2;
/// Value used for asyncId when no specific stream is specified.
static constexpr std::int64_t kCudaNoStream = -1;
#define CUDA_REPORT_IF_ERROR(expr) \ #define CUDA_REPORT_IF_ERROR(expr) \
[](cudaError_t err) { \ [](cudaError_t err) { \
if (err == cudaSuccess) \ if (err == cudaSuccess) \

View File

@ -94,9 +94,9 @@ int RTDECL(AllocatableCheckLengthParameter)(Descriptor &,
// Successfully allocated memory is initialized if the allocatable has a // Successfully allocated memory is initialized if the allocatable has a
// derived type, and is always initialized by AllocatableAllocateSource(). // derived type, and is always initialized by AllocatableAllocateSource().
// Performs all necessary coarray synchronization and validation actions. // Performs all necessary coarray synchronization and validation actions.
int RTDECL(AllocatableAllocate)(Descriptor &, bool hasStat = false, int RTDECL(AllocatableAllocate)(Descriptor &, std::int64_t asyncId = -1,
const Descriptor *errMsg = nullptr, const char *sourceFile = nullptr, bool hasStat = false, const Descriptor *errMsg = nullptr,
int sourceLine = 0); const char *sourceFile = nullptr, int sourceLine = 0);
int RTDECL(AllocatableAllocateSource)(Descriptor &, const Descriptor &source, int RTDECL(AllocatableAllocateSource)(Descriptor &, const Descriptor &source,
bool hasStat = false, const Descriptor *errMsg = nullptr, bool hasStat = false, const Descriptor *errMsg = nullptr,
const char *sourceFile = nullptr, int sourceLine = 0); const char *sourceFile = nullptr, int sourceLine = 0);

View File

@ -10,6 +10,7 @@
#define FORTRAN_RUNTIME_ALLOCATOR_REGISTRY_H_ #define FORTRAN_RUNTIME_ALLOCATOR_REGISTRY_H_
#include "flang/Common/api-attrs.h" #include "flang/Common/api-attrs.h"
#include <cstdint>
#include <cstdlib> #include <cstdlib>
#include <vector> #include <vector>
@ -25,7 +26,7 @@ static constexpr unsigned kUnifiedAllocatorPos = 4;
namespace Fortran::runtime { namespace Fortran::runtime {
using AllocFct = void *(*)(std::size_t); using AllocFct = void *(*)(std::size_t, std::int64_t);
using FreeFct = void (*)(void *); using FreeFct = void (*)(void *);
typedef struct Allocator_t { typedef struct Allocator_t {
@ -33,10 +34,11 @@ typedef struct Allocator_t {
FreeFct free{nullptr}; FreeFct free{nullptr};
} Allocator_t; } Allocator_t;
#ifdef RT_DEVICE_COMPILATION static RT_API_ATTRS void *MallocWrapper(
static RT_API_ATTRS void *MallocWrapper(std::size_t size) { std::size_t size, [[maybe_unused]] std::int64_t) {
return std::malloc(size); return std::malloc(size);
} }
#ifdef RT_DEVICE_COMPILATION
static RT_API_ATTRS void FreeWrapper(void *p) { return std::free(p); } static RT_API_ATTRS void FreeWrapper(void *p) { return std::free(p); }
#endif #endif
@ -46,7 +48,7 @@ struct AllocatorRegistry {
: allocators{{&MallocWrapper, &FreeWrapper}} {} : allocators{{&MallocWrapper, &FreeWrapper}} {}
#else #else
constexpr AllocatorRegistry() { constexpr AllocatorRegistry() {
allocators[kDefaultAllocator] = {&std::malloc, &std::free}; allocators[kDefaultAllocator] = {&MallocWrapper, &std::free};
}; };
#endif #endif
RT_API_ATTRS void Register(int, Allocator_t); RT_API_ATTRS void Register(int, Allocator_t);

View File

@ -374,7 +374,7 @@ public:
// before calling. It (re)computes the byte strides after // before calling. It (re)computes the byte strides after
// allocation. Does not allocate automatic components or // allocation. Does not allocate automatic components or
// perform default component initialization. // perform default component initialization.
RT_API_ATTRS int Allocate(); RT_API_ATTRS int Allocate(std::int64_t asyncId = -1);
RT_API_ATTRS void SetByteStrides(); RT_API_ATTRS void SetByteStrides();
// Deallocates storage; does not call FINAL subroutines or // Deallocates storage; does not call FINAL subroutines or

View File

@ -184,9 +184,14 @@ static mlir::Value genRuntimeAllocate(fir::FirOpBuilder &builder,
? fir::runtime::getRuntimeFunc<mkRTKey(PointerAllocate)>(loc, builder) ? fir::runtime::getRuntimeFunc<mkRTKey(PointerAllocate)>(loc, builder)
: fir::runtime::getRuntimeFunc<mkRTKey(AllocatableAllocate)>(loc, : fir::runtime::getRuntimeFunc<mkRTKey(AllocatableAllocate)>(loc,
builder); builder);
llvm::SmallVector<mlir::Value> args{ llvm::SmallVector<mlir::Value> args{box.getAddr()};
box.getAddr(), errorManager.hasStat, errorManager.errMsgAddr, if (!box.isPointer())
errorManager.sourceFile, errorManager.sourceLine}; args.push_back(
builder.createIntegerConstant(loc, builder.getI64Type(), -1));
args.push_back(errorManager.hasStat);
args.push_back(errorManager.errMsgAddr);
args.push_back(errorManager.sourceFile);
args.push_back(errorManager.sourceLine);
llvm::SmallVector<mlir::Value> operands; llvm::SmallVector<mlir::Value> operands;
for (auto [fst, snd] : llvm::zip(args, callee.getFunctionType().getInputs())) for (auto [fst, snd] : llvm::zip(args, callee.getFunctionType().getInputs()))
operands.emplace_back(builder.createConvert(loc, snd, fst)); operands.emplace_back(builder.createConvert(loc, snd, fst));

View File

@ -76,16 +76,19 @@ void fir::runtime::genAllocatableAllocate(fir::FirOpBuilder &builder,
mlir::func::FuncOp func{ mlir::func::FuncOp func{
fir::runtime::getRuntimeFunc<mkRTKey(AllocatableAllocate)>(loc, builder)}; fir::runtime::getRuntimeFunc<mkRTKey(AllocatableAllocate)>(loc, builder)};
mlir::FunctionType fTy{func.getFunctionType()}; mlir::FunctionType fTy{func.getFunctionType()};
mlir::Value asyncId =
builder.createIntegerConstant(loc, builder.getI64Type(), -1);
mlir::Value sourceFile{fir::factory::locationToFilename(builder, loc)}; mlir::Value sourceFile{fir::factory::locationToFilename(builder, loc)};
mlir::Value sourceLine{ mlir::Value sourceLine{
fir::factory::locationToLineNo(builder, loc, fTy.getInput(4))}; fir::factory::locationToLineNo(builder, loc, fTy.getInput(5))};
if (!hasStat) if (!hasStat)
hasStat = builder.createBool(loc, false); hasStat = builder.createBool(loc, false);
if (!errMsg) { if (!errMsg) {
mlir::Type boxNoneTy = fir::BoxType::get(builder.getNoneType()); mlir::Type boxNoneTy = fir::BoxType::get(builder.getNoneType());
errMsg = builder.create<fir::AbsentOp>(loc, boxNoneTy).getResult(); errMsg = builder.create<fir::AbsentOp>(loc, boxNoneTy).getResult();
} }
llvm::SmallVector<mlir::Value> args{fir::runtime::createArguments( llvm::SmallVector<mlir::Value> args{
builder, loc, fTy, desc, hasStat, errMsg, sourceFile, sourceLine)}; fir::runtime::createArguments(builder, loc, fTy, desc, asyncId, hasStat,
errMsg, sourceFile, sourceLine)};
builder.create<fir::CallOp>(loc, func, args); builder.create<fir::CallOp>(loc, func, args);
} }

View File

@ -52,7 +52,7 @@ int RTDEF(CUFAllocatableAllocate)(Descriptor &desc, int64_t stream,
} }
// Perform the standard allocation. // Perform the standard allocation.
int stat{RTNAME(AllocatableAllocate)( int stat{RTNAME(AllocatableAllocate)(
desc, hasStat, errMsg, sourceFile, sourceLine)}; desc, stream, hasStat, errMsg, sourceFile, sourceLine)};
return stat; return stat;
} }

View File

@ -33,7 +33,8 @@ void RTDEF(CUFRegisterAllocator)() {
} }
} }
void *CUFAllocPinned(std::size_t sizeInBytes) { void *CUFAllocPinned(
std::size_t sizeInBytes, [[maybe_unused]] std::int64_t asyncId) {
void *p; void *p;
CUDA_REPORT_IF_ERROR(cudaMallocHost((void **)&p, sizeInBytes)); CUDA_REPORT_IF_ERROR(cudaMallocHost((void **)&p, sizeInBytes));
return p; return p;
@ -41,7 +42,8 @@ void *CUFAllocPinned(std::size_t sizeInBytes) {
void CUFFreePinned(void *p) { CUDA_REPORT_IF_ERROR(cudaFreeHost(p)); } void CUFFreePinned(void *p) { CUDA_REPORT_IF_ERROR(cudaFreeHost(p)); }
void *CUFAllocDevice(std::size_t sizeInBytes) { void *CUFAllocDevice(
std::size_t sizeInBytes, [[maybe_unused]] std::int64_t asyncId) {
void *p; void *p;
CUDA_REPORT_IF_ERROR(cudaMalloc(&p, sizeInBytes)); CUDA_REPORT_IF_ERROR(cudaMalloc(&p, sizeInBytes));
return p; return p;
@ -49,7 +51,8 @@ void *CUFAllocDevice(std::size_t sizeInBytes) {
void CUFFreeDevice(void *p) { CUDA_REPORT_IF_ERROR(cudaFree(p)); } void CUFFreeDevice(void *p) { CUDA_REPORT_IF_ERROR(cudaFree(p)); }
void *CUFAllocManaged(std::size_t sizeInBytes) { void *CUFAllocManaged(
std::size_t sizeInBytes, [[maybe_unused]] std::int64_t asyncId) {
void *p; void *p;
CUDA_REPORT_IF_ERROR( CUDA_REPORT_IF_ERROR(
cudaMallocManaged((void **)&p, sizeInBytes, cudaMemAttachGlobal)); cudaMallocManaged((void **)&p, sizeInBytes, cudaMemAttachGlobal));
@ -58,9 +61,10 @@ void *CUFAllocManaged(std::size_t sizeInBytes) {
void CUFFreeManaged(void *p) { CUDA_REPORT_IF_ERROR(cudaFree(p)); } void CUFFreeManaged(void *p) { CUDA_REPORT_IF_ERROR(cudaFree(p)); }
void *CUFAllocUnified(std::size_t sizeInBytes) { void *CUFAllocUnified(
std::size_t sizeInBytes, [[maybe_unused]] std::int64_t asyncId) {
// Call alloc managed for the time being. // Call alloc managed for the time being.
return CUFAllocManaged(sizeInBytes); return CUFAllocManaged(sizeInBytes, asyncId);
} }
void CUFFreeUnified(void *p) { void CUFFreeUnified(void *p) {

View File

@ -19,7 +19,8 @@ RT_EXT_API_GROUP_BEGIN
Descriptor *RTDEF(CUFAllocDesciptor)( Descriptor *RTDEF(CUFAllocDesciptor)(
std::size_t sizeInBytes, const char *sourceFile, int sourceLine) { std::size_t sizeInBytes, const char *sourceFile, int sourceLine) {
return reinterpret_cast<Descriptor *>(CUFAllocManaged(sizeInBytes)); return reinterpret_cast<Descriptor *>(
CUFAllocManaged(sizeInBytes, kCudaNoStream));
} }
void RTDEF(CUFFreeDesciptor)( void RTDEF(CUFFreeDesciptor)(

View File

@ -133,15 +133,17 @@ void RTDEF(AllocatableApplyMold)(
} }
} }
int RTDEF(AllocatableAllocate)(Descriptor &descriptor, bool hasStat, int RTDEF(AllocatableAllocate)(Descriptor &descriptor, std::int64_t asyncId,
const Descriptor *errMsg, const char *sourceFile, int sourceLine) { bool hasStat, const Descriptor *errMsg, const char *sourceFile,
int sourceLine) {
Terminator terminator{sourceFile, sourceLine}; Terminator terminator{sourceFile, sourceLine};
if (!descriptor.IsAllocatable()) { if (!descriptor.IsAllocatable()) {
return ReturnError(terminator, StatInvalidDescriptor, errMsg, hasStat); return ReturnError(terminator, StatInvalidDescriptor, errMsg, hasStat);
} else if (descriptor.IsAllocated()) { } else if (descriptor.IsAllocated()) {
return ReturnError(terminator, StatBaseNotNull, errMsg, hasStat); return ReturnError(terminator, StatBaseNotNull, errMsg, hasStat);
} else { } else {
int stat{ReturnError(terminator, descriptor.Allocate(), errMsg, hasStat)}; int stat{
ReturnError(terminator, descriptor.Allocate(asyncId), errMsg, hasStat)};
if (stat == StatOk) { if (stat == StatOk) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) { if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) { if (const auto *derived{addendum->derivedType()}) {
@ -160,7 +162,7 @@ int RTDEF(AllocatableAllocateSource)(Descriptor &alloc,
const Descriptor &source, bool hasStat, const Descriptor *errMsg, const Descriptor &source, bool hasStat, const Descriptor *errMsg,
const char *sourceFile, int sourceLine) { const char *sourceFile, int sourceLine) {
int stat{RTNAME(AllocatableAllocate)( int stat{RTNAME(AllocatableAllocate)(
alloc, hasStat, errMsg, sourceFile, sourceLine)}; alloc, /*asyncId=*/-1, hasStat, errMsg, sourceFile, sourceLine)};
if (stat == StatOk) { if (stat == StatOk) {
Terminator terminator{sourceFile, sourceLine}; Terminator terminator{sourceFile, sourceLine};
DoFromSourceAssign(alloc, source, terminator); DoFromSourceAssign(alloc, source, terminator);

View File

@ -50,8 +50,8 @@ static RT_API_ATTRS void AllocateOrReallocateVectorIfNeeded(
initialAllocationSize(fromElements, to.ElementBytes())}; initialAllocationSize(fromElements, to.ElementBytes())};
to.GetDimension(0).SetBounds(1, allocationSize); to.GetDimension(0).SetBounds(1, allocationSize);
RTNAME(AllocatableAllocate) RTNAME(AllocatableAllocate)
(to, /*hasStat=*/false, /*errMsg=*/nullptr, vector.sourceFile, (to, /*asyncId=*/-1, /*hasStat=*/false, /*errMsg=*/nullptr,
vector.sourceLine); vector.sourceFile, vector.sourceLine);
to.GetDimension(0).SetBounds(1, fromElements); to.GetDimension(0).SetBounds(1, fromElements);
vector.actualAllocationSize = allocationSize; vector.actualAllocationSize = allocationSize;
} else { } else {
@ -59,8 +59,8 @@ static RT_API_ATTRS void AllocateOrReallocateVectorIfNeeded(
// first value: there should be no reallocation. // first value: there should be no reallocation.
RUNTIME_CHECK(terminator, previousToElements >= fromElements); RUNTIME_CHECK(terminator, previousToElements >= fromElements);
RTNAME(AllocatableAllocate) RTNAME(AllocatableAllocate)
(to, /*hasStat=*/false, /*errMsg=*/nullptr, vector.sourceFile, (to, /*asyncId=*/-1, /*hasStat=*/false, /*errMsg=*/nullptr,
vector.sourceLine); vector.sourceFile, vector.sourceLine);
vector.actualAllocationSize = previousToElements; vector.actualAllocationSize = previousToElements;
} }
} else { } else {

View File

@ -163,7 +163,7 @@ RT_API_ATTRS static inline int MapAllocIdx(const Descriptor &desc) {
#endif #endif
} }
RT_API_ATTRS int Descriptor::Allocate() { RT_API_ATTRS int Descriptor::Allocate(std::int64_t asyncId) {
std::size_t elementBytes{ElementBytes()}; std::size_t elementBytes{ElementBytes()};
if (static_cast<std::int64_t>(elementBytes) < 0) { if (static_cast<std::int64_t>(elementBytes) < 0) {
// F'2023 7.4.4.2 p5: "If the character length parameter value evaluates // F'2023 7.4.4.2 p5: "If the character length parameter value evaluates
@ -175,7 +175,7 @@ RT_API_ATTRS int Descriptor::Allocate() {
// Zero size allocation is possible in Fortran and the resulting // Zero size allocation is possible in Fortran and the resulting
// descriptor must be allocated/associated. Since std::malloc(0) // descriptor must be allocated/associated. Since std::malloc(0)
// result is implementation defined, always allocate at least one byte. // result is implementation defined, always allocate at least one byte.
void *p{alloc(byteSize ? byteSize : 1)}; void *p{alloc(byteSize ? byteSize : 1, asyncId)};
if (!p) { if (!p) {
return CFI_ERROR_MEM_ALLOCATION; return CFI_ERROR_MEM_ALLOCATION;
} }

View File

@ -192,7 +192,7 @@ func.func @test_polymorphic(%arg0: !fir.class<!fir.type<_QMtypesTt>> {fir.bindc_
// CHECK: %[[VAL_35:.*]] = fir.absent !fir.box<none> // CHECK: %[[VAL_35:.*]] = fir.absent !fir.box<none>
// CHECK: %[[VAL_36:.*]] = fir.convert %[[VAL_4]] : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>>) -> !fir.ref<!fir.box<none>> // CHECK: %[[VAL_36:.*]] = fir.convert %[[VAL_4]] : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>>) -> !fir.ref<!fir.box<none>>
// CHECK: %[[VAL_37:.*]] = fir.convert %[[VAL_31]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8> // CHECK: %[[VAL_37:.*]] = fir.convert %[[VAL_31]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8>
// CHECK: %[[VAL_38:.*]] = fir.call @_FortranAAllocatableAllocate(%[[VAL_36]], %[[VAL_34]], %[[VAL_35]], %[[VAL_37]], %[[VAL_33]]) : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 // CHECK: %[[VAL_38:.*]] = fir.call @_FortranAAllocatableAllocate(%[[VAL_36]], %{{.*}}, %[[VAL_34]], %[[VAL_35]], %[[VAL_37]], %[[VAL_33]]) : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
// CHECK: %[[VAL_39:.*]] = fir.load %[[VAL_13]]#0 : !fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>> // CHECK: %[[VAL_39:.*]] = fir.load %[[VAL_13]]#0 : !fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>>
// CHECK: %[[VAL_40:.*]] = arith.constant 1 : index // CHECK: %[[VAL_40:.*]] = arith.constant 1 : index
// CHECK: fir.do_loop %[[VAL_41:.*]] = %[[VAL_40]] to %[[EX1]] step %[[VAL_40]] unordered { // CHECK: fir.do_loop %[[VAL_41:.*]] = %[[VAL_40]] to %[[EX1]] step %[[VAL_40]] unordered {
@ -276,7 +276,7 @@ func.func @test_polymorphic_expr(%arg0: !fir.class<!fir.type<_QMtypesTt>> {fir.b
// CHECK: %[[VAL_36:.*]] = fir.absent !fir.box<none> // CHECK: %[[VAL_36:.*]] = fir.absent !fir.box<none>
// CHECK: %[[VAL_37:.*]] = fir.convert %[[VAL_5]] : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>>) -> !fir.ref<!fir.box<none>> // CHECK: %[[VAL_37:.*]] = fir.convert %[[VAL_5]] : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>>) -> !fir.ref<!fir.box<none>>
// CHECK: %[[VAL_38:.*]] = fir.convert %[[VAL_32]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8> // CHECK: %[[VAL_38:.*]] = fir.convert %[[VAL_32]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8>
// CHECK: %[[VAL_39:.*]] = fir.call @_FortranAAllocatableAllocate(%[[VAL_37]], %[[VAL_35]], %[[VAL_36]], %[[VAL_38]], %[[VAL_34]]) : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 // CHECK: %[[VAL_39:.*]] = fir.call @_FortranAAllocatableAllocate(%[[VAL_37]], %{{.*}}, %[[VAL_35]], %[[VAL_36]], %[[VAL_38]], %[[VAL_34]]) : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
// CHECK: %[[VAL_40:.*]] = fir.load %[[VAL_14]]#0 : !fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>> // CHECK: %[[VAL_40:.*]] = fir.load %[[VAL_14]]#0 : !fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>>
// CHECK: %[[VAL_41:.*]] = arith.constant 1 : index // CHECK: %[[VAL_41:.*]] = arith.constant 1 : index
// CHECK: fir.do_loop %[[VAL_42:.*]] = %[[VAL_41]] to %[[VAL_3]] step %[[VAL_41]] unordered { // CHECK: fir.do_loop %[[VAL_42:.*]] = %[[VAL_41]] to %[[VAL_3]] step %[[VAL_41]] unordered {
@ -329,7 +329,7 @@ func.func @test_polymorphic_expr(%arg0: !fir.class<!fir.type<_QMtypesTt>> {fir.b
// CHECK: %[[VAL_85:.*]] = fir.absent !fir.box<none> // CHECK: %[[VAL_85:.*]] = fir.absent !fir.box<none>
// CHECK: %[[VAL_86:.*]] = fir.convert %[[VAL_4]] : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>>) -> !fir.ref<!fir.box<none>> // CHECK: %[[VAL_86:.*]] = fir.convert %[[VAL_4]] : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>>) -> !fir.ref<!fir.box<none>>
// CHECK: %[[VAL_87:.*]] = fir.convert %[[VAL_81]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8> // CHECK: %[[VAL_87:.*]] = fir.convert %[[VAL_81]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8>
// CHECK: %[[VAL_88:.*]] = fir.call @_FortranAAllocatableAllocate(%[[VAL_86]], %[[VAL_84]], %[[VAL_85]], %[[VAL_87]], %[[VAL_83]]) : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 // CHECK: %[[VAL_88:.*]] = fir.call @_FortranAAllocatableAllocate(%[[VAL_86]], %{{.*}}, %[[VAL_84]], %[[VAL_85]], %[[VAL_87]], %[[VAL_83]]) : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
// CHECK: %[[VAL_89:.*]] = fir.load %[[VAL_63]]#0 : !fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>> // CHECK: %[[VAL_89:.*]] = fir.load %[[VAL_63]]#0 : !fir.ref<!fir.class<!fir.heap<!fir.array<?x?x!fir.type<_QMtypesTt>>>>>
// CHECK: %[[VAL_90:.*]] = arith.constant 1 : index // CHECK: %[[VAL_90:.*]] = arith.constant 1 : index
// CHECK: fir.do_loop %[[VAL_91:.*]] = %[[VAL_90]] to %[[VAL_3]] step %[[VAL_90]] unordered { // CHECK: fir.do_loop %[[VAL_91:.*]] = %[[VAL_90]] to %[[VAL_3]] step %[[VAL_90]] unordered {

View File

@ -469,6 +469,6 @@ contains
end module end module
! CHECK-LABEL: func.func @_QMacc_declare_post_action_statPinit() ! CHECK-LABEL: func.func @_QMacc_declare_post_action_statPinit()
! CHECK: fir.call @_FortranAAllocatableAllocate({{.*}}) fastmath<contract> {acc.declare_action = #acc.declare_action<postAlloc = @_QMacc_declare_post_action_statEx_acc_declare_update_desc_post_alloc>} : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: fir.call @_FortranAAllocatableAllocate({{.*}}) fastmath<contract> {acc.declare_action = #acc.declare_action<postAlloc = @_QMacc_declare_post_action_statEx_acc_declare_update_desc_post_alloc>} : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
! CHECK: fir.if ! CHECK: fir.if
! CHECK: fir.call @_FortranAAllocatableAllocate({{.*}}) fastmath<contract> {acc.declare_action = #acc.declare_action<postAlloc = @_QMacc_declare_post_action_statEy_acc_declare_update_desc_post_alloc>} : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: fir.call @_FortranAAllocatableAllocate({{.*}}) fastmath<contract> {acc.declare_action = #acc.declare_action<postAlloc = @_QMacc_declare_post_action_statEy_acc_declare_update_desc_post_alloc>} : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32

View File

@ -267,7 +267,7 @@ contains
! CHECK: %[[C0:.*]] = arith.constant 0 : i32 ! CHECK: %[[C0:.*]] = arith.constant 0 : i32
! CHECK: fir.call @_FortranAAllocatableInitDerivedForAllocate(%[[P_CAST]], %[[TYPE_DESC_P1_CAST]], %[[RANK]], %[[C0]]) {{.*}}: (!fir.ref<!fir.box<none>>, !fir.ref<none>, i32, i32) -> none ! CHECK: fir.call @_FortranAAllocatableInitDerivedForAllocate(%[[P_CAST]], %[[TYPE_DESC_P1_CAST]], %[[RANK]], %[[C0]]) {{.*}}: (!fir.ref<!fir.box<none>>, !fir.ref<none>, i32, i32) -> none
! CHECK: %[[P_CAST:.*]] = fir.convert %[[P_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[P_CAST:.*]] = fir.convert %[[P_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[P_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[P_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
! CHECK: %[[TYPE_DESC_P1:.*]] = fir.type_desc !fir.type<_QMpolyTp1{a:i32,b:i32}> ! CHECK: %[[TYPE_DESC_P1:.*]] = fir.type_desc !fir.type<_QMpolyTp1{a:i32,b:i32}>
! CHECK: %[[C1_CAST:.*]] = fir.convert %[[C1_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[C1_CAST:.*]] = fir.convert %[[C1_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>>
@ -276,7 +276,7 @@ contains
! CHECK: %[[C0:.*]] = arith.constant 0 : i32 ! CHECK: %[[C0:.*]] = arith.constant 0 : i32
! CHECK: fir.call @_FortranAAllocatableInitDerivedForAllocate(%[[C1_CAST]], %[[TYPE_DESC_P1_CAST]], %[[RANK]], %[[C0]]) {{.*}}: (!fir.ref<!fir.box<none>>, !fir.ref<none>, i32, i32) -> none ! CHECK: fir.call @_FortranAAllocatableInitDerivedForAllocate(%[[C1_CAST]], %[[TYPE_DESC_P1_CAST]], %[[RANK]], %[[C0]]) {{.*}}: (!fir.ref<!fir.box<none>>, !fir.ref<none>, i32, i32) -> none
! CHECK: %[[C1_CAST:.*]] = fir.convert %[[C1_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[C1_CAST:.*]] = fir.convert %[[C1_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[C1_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[C1_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
! CHECK: %[[TYPE_DESC_P2:.*]] = fir.type_desc !fir.type<_QMpolyTp2{p1:!fir.type<_QMpolyTp1{a:i32,b:i32}>,c:i32}> ! CHECK: %[[TYPE_DESC_P2:.*]] = fir.type_desc !fir.type<_QMpolyTp2{p1:!fir.type<_QMpolyTp1{a:i32,b:i32}>,c:i32}>
! CHECK: %[[C2_CAST:.*]] = fir.convert %[[C2_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[C2_CAST:.*]] = fir.convert %[[C2_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>>
@ -285,7 +285,7 @@ contains
! CHECK: %[[C0:.*]] = arith.constant 0 : i32 ! CHECK: %[[C0:.*]] = arith.constant 0 : i32
! CHECK: fir.call @_FortranAAllocatableInitDerivedForAllocate(%[[C2_CAST]], %[[TYPE_DESC_P2_CAST]], %[[RANK]], %[[C0]]) {{.*}}: (!fir.ref<!fir.box<none>>, !fir.ref<none>, i32, i32) -> none ! CHECK: fir.call @_FortranAAllocatableInitDerivedForAllocate(%[[C2_CAST]], %[[TYPE_DESC_P2_CAST]], %[[RANK]], %[[C0]]) {{.*}}: (!fir.ref<!fir.box<none>>, !fir.ref<none>, i32, i32) -> none
! CHECK: %[[C2_CAST:.*]] = fir.convert %[[C2_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[C2_CAST:.*]] = fir.convert %[[C2_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[C2_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[C2_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
! CHECK: %[[TYPE_DESC_P1:.*]] = fir.type_desc !fir.type<_QMpolyTp1{a:i32,b:i32}> ! CHECK: %[[TYPE_DESC_P1:.*]] = fir.type_desc !fir.type<_QMpolyTp1{a:i32,b:i32}>
! CHECK: %[[C3_CAST:.*]] = fir.convert %[[C3_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[C3_CAST:.*]] = fir.convert %[[C3_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>>) -> !fir.ref<!fir.box<none>>
@ -300,7 +300,7 @@ contains
! CHECK: %[[C10_I64:.*]] = fir.convert %[[C10]] : (i32) -> i64 ! CHECK: %[[C10_I64:.*]] = fir.convert %[[C10]] : (i32) -> i64
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableSetBounds(%[[C3_CAST]], %[[C0]], %[[C1_I64]], %[[C10_I64]]) {{.*}}: (!fir.ref<!fir.box<none>>, i32, i64, i64) -> none ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableSetBounds(%[[C3_CAST]], %[[C0]], %[[C1_I64]], %[[C10_I64]]) {{.*}}: (!fir.ref<!fir.box<none>>, i32, i64, i64) -> none
! CHECK: %[[C3_CAST:.*]] = fir.convert %[[C3_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[C3_CAST:.*]] = fir.convert %[[C3_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[C3_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[C3_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
! CHECK: %[[TYPE_DESC_P2:.*]] = fir.type_desc !fir.type<_QMpolyTp2{p1:!fir.type<_QMpolyTp1{a:i32,b:i32}>,c:i32}> ! CHECK: %[[TYPE_DESC_P2:.*]] = fir.type_desc !fir.type<_QMpolyTp2{p1:!fir.type<_QMpolyTp1{a:i32,b:i32}>,c:i32}>
! CHECK: %[[C4_CAST:.*]] = fir.convert %[[C4_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[C4_CAST:.*]] = fir.convert %[[C4_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>>) -> !fir.ref<!fir.box<none>>
@ -316,7 +316,7 @@ contains
! CHECK: %[[C20_I64:.*]] = fir.convert %[[C20]] : (i32) -> i64 ! CHECK: %[[C20_I64:.*]] = fir.convert %[[C20]] : (i32) -> i64
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableSetBounds(%[[C4_CAST]], %[[C0]], %[[C1_I64]], %[[C20_I64]]) {{.*}}: (!fir.ref<!fir.box<none>>, i32, i64, i64) -> none ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableSetBounds(%[[C4_CAST]], %[[C0]], %[[C1_I64]], %[[C20_I64]]) {{.*}}: (!fir.ref<!fir.box<none>>, i32, i64, i64) -> none
! CHECK: %[[C4_CAST:.*]] = fir.convert %[[C4_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[C4_CAST:.*]] = fir.convert %[[C4_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<!fir.array<?x!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[C4_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[C4_CAST]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
! CHECK: %[[C1_LOAD1:.*]] = fir.load %[[C1_DECL]]#0 : !fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>> ! CHECK: %[[C1_LOAD1:.*]] = fir.load %[[C1_DECL]]#0 : !fir.ref<!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>>
! CHECK: fir.dispatch "proc1"(%[[C1_LOAD1]] : !fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>) ! CHECK: fir.dispatch "proc1"(%[[C1_LOAD1]] : !fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>)
@ -390,7 +390,7 @@ contains
! CHECK: %[[CORANK:.*]] = arith.constant 0 : i32 ! CHECK: %[[CORANK:.*]] = arith.constant 0 : i32
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableInitIntrinsicForAllocate(%[[BOX_NONE]], %[[CAT]], %[[KIND]], %[[RANK]], %[[CORANK]]) {{.*}} : (!fir.ref<!fir.box<none>>, i32, i32, i32, i32) -> none ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableInitIntrinsicForAllocate(%[[BOX_NONE]], %[[CAT]], %[[KIND]], %[[RANK]], %[[CORANK]]) {{.*}} : (!fir.ref<!fir.box<none>>, i32, i32, i32, i32) -> none
! CHECK: %[[BOX_NONE:.*]] = fir.convert %[[P_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<none>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[BOX_NONE:.*]] = fir.convert %[[P_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<none>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[BOX_NONE]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[BOX_NONE]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
! CHECK: %[[BOX_NONE:.*]] = fir.convert %[[PTR_DECL]]#1 : (!fir.ref<!fir.class<!fir.ptr<none>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[BOX_NONE:.*]] = fir.convert %[[PTR_DECL]]#1 : (!fir.ref<!fir.class<!fir.ptr<none>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %[[CAT:.*]] = arith.constant 1 : i32 ! CHECK: %[[CAT:.*]] = arith.constant 1 : i32
@ -573,7 +573,7 @@ contains
! CHECK: %[[CORANK:.*]] = arith.constant 0 : i32 ! CHECK: %[[CORANK:.*]] = arith.constant 0 : i32
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableInitCharacterForAllocate(%[[A_NONE]], %[[LEN]], %[[KIND]], %[[RANK]], %[[CORANK]]) {{.*}} : (!fir.ref<!fir.box<none>>, i64, i32, i32, i32) -> none ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableInitCharacterForAllocate(%[[A_NONE]], %[[LEN]], %[[KIND]], %[[RANK]], %[[CORANK]]) {{.*}} : (!fir.ref<!fir.box<none>>, i64, i32, i32, i32) -> none
! CHECK: %[[A_NONE:.*]] = fir.convert %[[A_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<none>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[A_NONE:.*]] = fir.convert %[[A_DECL]]#1 : (!fir.ref<!fir.class<!fir.heap<none>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[A_NONE]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[A_NONE]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
end module end module
@ -592,17 +592,17 @@ end
! LLVM-LABEL: define void @_QMpolyPtest_allocatable() ! LLVM-LABEL: define void @_QMpolyPtest_allocatable()
! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp1, i32 0, i32 0) ! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp1, i32 0, i32 0)
! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}}) ! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i64 -1, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}})
! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp1, i32 0, i32 0) ! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp1, i32 0, i32 0)
! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}}) ! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i64 -1, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}})
! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp2, i32 0, i32 0) ! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp2, i32 0, i32 0)
! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}}) ! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i64 -1, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}})
! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp1, i32 1, i32 0) ! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp1, i32 1, i32 0)
! LLVM: %{{.*}} = call {} @_FortranAAllocatableSetBounds(ptr %{{.*}}, i32 0, i64 1, i64 10) ! LLVM: %{{.*}} = call {} @_FortranAAllocatableSetBounds(ptr %{{.*}}, i32 0, i64 1, i64 10)
! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}}) ! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i64 -1, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}})
! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp2, i32 1, i32 0) ! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %{{.*}}, ptr @_QMpolyEXdtXp2, i32 1, i32 0)
! LLVM: %{{.*}} = call {} @_FortranAAllocatableSetBounds(ptr %{{.*}}, i32 0, i64 1, i64 20) ! LLVM: %{{.*}} = call {} @_FortranAAllocatableSetBounds(ptr %{{.*}}, i32 0, i64 1, i64 20)
! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}}) ! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %{{.*}}, i64 -1, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}})
! LLVM-COUNT-2: call void %{{[0-9]*}}() ! LLVM-COUNT-2: call void %{{[0-9]*}}()
! LLVM: call void @llvm.memcpy.p0.p0.i32 ! LLVM: call void @llvm.memcpy.p0.p0.i32
@ -683,5 +683,5 @@ end
! LLVM: store { ptr, i64, i32, i8, i8, i8, i8, ptr, [1 x i64] } { ptr null, i64 ptrtoint (ptr getelementptr (%_QMpolyTp1, ptr null, i32 1) to i64), i32 20240719, i8 0, i8 42, i8 2, i8 1, ptr @_QMpolyEXdtXp1, [1 x i64] zeroinitializer }, ptr %[[ALLOCA1:[0-9]*]] ! LLVM: store { ptr, i64, i32, i8, i8, i8, i8, ptr, [1 x i64] } { ptr null, i64 ptrtoint (ptr getelementptr (%_QMpolyTp1, ptr null, i32 1) to i64), i32 20240719, i8 0, i8 42, i8 2, i8 1, ptr @_QMpolyEXdtXp1, [1 x i64] zeroinitializer }, ptr %[[ALLOCA1:[0-9]*]]
! LLVM: call void @llvm.memcpy.p0.p0.i32(ptr %[[ALLOCA2:[0-9]+]], ptr %[[ALLOCA1]], i32 40, i1 false) ! LLVM: call void @llvm.memcpy.p0.p0.i32(ptr %[[ALLOCA2:[0-9]+]], ptr %[[ALLOCA1]], i32 40, i1 false)
! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %[[ALLOCA2]], ptr @_QMpolyEXdtXp1, i32 0, i32 0) ! LLVM: %{{.*}} = call {} @_FortranAAllocatableInitDerivedForAllocate(ptr %[[ALLOCA2]], ptr @_QMpolyEXdtXp1, i32 0, i32 0)
! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %[[ALLOCA2]], i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}}) ! LLVM: %{{.*}} = call i32 @_FortranAAllocatableAllocate(ptr %[[ALLOCA2]], i64 -1, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}})
! LLVM: %{{.*}} = call i32 @_FortranAAllocatableDeallocatePolymorphic(ptr %[[ALLOCA2]], ptr {{.*}}, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}}) ! LLVM: %{{.*}} = call i32 @_FortranAAllocatableDeallocatePolymorphic(ptr %[[ALLOCA2]], ptr {{.*}}, i1 false, ptr null, ptr @_QQclX{{.*}}, i32 {{.*}})

View File

@ -31,7 +31,7 @@ subroutine foo()
! CHECK: fir.call @{{.*}}AllocatableSetBounds(%[[xBoxCast2]], %c0{{.*}}, %[[xlbCast]], %[[xubCast]]) {{.*}}: (!fir.ref<!fir.box<none>>, i32, i64, i64) -> none ! CHECK: fir.call @{{.*}}AllocatableSetBounds(%[[xBoxCast2]], %c0{{.*}}, %[[xlbCast]], %[[xubCast]]) {{.*}}: (!fir.ref<!fir.box<none>>, i32, i64, i64) -> none
! CHECK-DAG: %[[xBoxCast3:.*]] = fir.convert %[[xBoxAddr]] : (!fir.ref<!fir.box<!fir.heap<!fir.array<?xf32>>>>) -> !fir.ref<!fir.box<none>> ! CHECK-DAG: %[[xBoxCast3:.*]] = fir.convert %[[xBoxAddr]] : (!fir.ref<!fir.box<!fir.heap<!fir.array<?xf32>>>>) -> !fir.ref<!fir.box<none>>
! CHECK-DAG: %[[sourceFile:.*]] = fir.convert %{{.*}} -> !fir.ref<i8> ! CHECK-DAG: %[[sourceFile:.*]] = fir.convert %{{.*}} -> !fir.ref<i8>
! CHECK: fir.call @{{.*}}AllocatableAllocate(%[[xBoxCast3]], %false{{.*}}, %[[errMsg]], %[[sourceFile]], %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: fir.call @{{.*}}AllocatableAllocate(%[[xBoxCast3]], %c-1{{.*}}, %false{{.*}}, %[[errMsg]], %[[sourceFile]], %{{.*}}) {{.*}}: (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
! Simply check that we are emitting the right numebr of set bound for y and z. Otherwise, this is just like x. ! Simply check that we are emitting the right numebr of set bound for y and z. Otherwise, this is just like x.
! CHECK: fir.convert %[[yBoxAddr]] : (!fir.ref<!fir.box<!fir.heap<!fir.array<?x?xf32>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: fir.convert %[[yBoxAddr]] : (!fir.ref<!fir.box<!fir.heap<!fir.array<?x?xf32>>>>) -> !fir.ref<!fir.box<none>>
@ -180,4 +180,4 @@ end subroutine
! CHECK: %[[M_BOX_NONE:.*]] = fir.convert %[[EMBOX_M]] : (!fir.box<!fir.array<10xi32>>) -> !fir.box<none> ! CHECK: %[[M_BOX_NONE:.*]] = fir.convert %[[EMBOX_M]] : (!fir.box<!fir.array<10xi32>>) -> !fir.box<none>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableApplyMold(%[[A_BOX_NONE]], %[[M_BOX_NONE]], %[[RANK]]) {{.*}} : (!fir.ref<!fir.box<none>>, !fir.box<none>, i32) -> none ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableApplyMold(%[[A_BOX_NONE]], %[[M_BOX_NONE]], %[[RANK]]) {{.*}} : (!fir.ref<!fir.box<none>>, !fir.box<none>, i32) -> none
! CHECK: %[[A_BOX_NONE:.*]] = fir.convert %[[A]] : (!fir.ref<!fir.box<!fir.heap<!fir.array<?xi32>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[A_BOX_NONE:.*]] = fir.convert %[[A]] : (!fir.ref<!fir.box<!fir.heap<!fir.array<?xi32>>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[A_BOX_NONE]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[A_BOX_NONE]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32

View File

@ -16,7 +16,7 @@ end subroutine
! CHECK: %[[A_REF_BOX_NONE1:.*]] = fir.convert %[[A]] : (!fir.ref<!fir.box<!fir.heap<i32>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[A_REF_BOX_NONE1:.*]] = fir.convert %[[A]] : (!fir.ref<!fir.box<!fir.heap<i32>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableApplyMold(%[[A_REF_BOX_NONE1]], %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, !fir.box<none>, i32) -> none ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableApplyMold(%[[A_REF_BOX_NONE1]], %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, !fir.box<none>, i32) -> none
! CHECK: %[[A_REF_BOX_NONE2:.*]] = fir.convert %[[A]] : (!fir.ref<!fir.box<!fir.heap<i32>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[A_REF_BOX_NONE2:.*]] = fir.convert %[[A]] : (!fir.ref<!fir.box<!fir.heap<i32>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[A_REF_BOX_NONE2]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[A_REF_BOX_NONE2]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
subroutine array_scalar_mold_allocation() subroutine array_scalar_mold_allocation()
real, allocatable :: a(:) real, allocatable :: a(:)
@ -40,4 +40,4 @@ end subroutine array_scalar_mold_allocation
! CHECK: %[[REF_BOX_A1:.*]] = fir.convert %1 : (!fir.ref<!fir.box<!fir.heap<!fir.array<?xf32>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[REF_BOX_A1:.*]] = fir.convert %1 : (!fir.ref<!fir.box<!fir.heap<!fir.array<?xf32>>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableSetBounds(%[[REF_BOX_A1]], {{.*}},{{.*}}, {{.*}}) fastmath<contract> : (!fir.ref<!fir.box<none>>, i32, i64, i64) -> none ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableSetBounds(%[[REF_BOX_A1]], {{.*}},{{.*}}, {{.*}}) fastmath<contract> : (!fir.ref<!fir.box<none>>, i32, i64, i64) -> none
! CHECK: %[[REF_BOX_A2:.*]] = fir.convert %[[A]] : (!fir.ref<!fir.box<!fir.heap<!fir.array<?xf32>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[REF_BOX_A2:.*]] = fir.convert %[[A]] : (!fir.ref<!fir.box<!fir.heap<!fir.array<?xf32>>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[REF_BOX_A2]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[REF_BOX_A2]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32

View File

@ -1154,11 +1154,11 @@ end program
! CHECK-LABEL: func.func @_QQmain() attributes {fir.bindc_name = "test"} { ! CHECK-LABEL: func.func @_QQmain() attributes {fir.bindc_name = "test"} {
! CHECK: %[[ADDR_O:.*]] = fir.address_of(@_QFEo) : !fir.ref<!fir.box<!fir.heap<!fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}>>>> ! CHECK: %[[ADDR_O:.*]] = fir.address_of(@_QFEo) : !fir.ref<!fir.box<!fir.heap<!fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}>>>>
! CHECK: %[[BOX_NONE:.*]] = fir.convert %[[ADDR_O]] : (!fir.ref<!fir.box<!fir.heap<!fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}>>>>) -> !fir.ref<!fir.box<none>> ! CHECK: %[[BOX_NONE:.*]] = fir.convert %[[ADDR_O]] : (!fir.ref<!fir.box<!fir.heap<!fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}>>>>) -> !fir.ref<!fir.box<none>>
! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[BOX_NONE]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32 ! CHECK: %{{.*}} = fir.call @_FortranAAllocatableAllocate(%[[BOX_NONE]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {{.*}} : (!fir.ref<!fir.box<none>>, i64, i1, !fir.box<none>, !fir.ref<i8>, i32) -> i32
! CHECK: %[[O:.*]] = fir.load %[[ADDR_O]] : !fir.ref<!fir.box<!fir.heap<!fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}>>>> ! CHECK: %[[O:.*]] = fir.load %[[ADDR_O]] : !fir.ref<!fir.box<!fir.heap<!fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}>>>>
! CHECK: %[[FIELD_INNER:.*]] = fir.field_index inner, !fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}> ! CHECK: %[[FIELD_INNER:.*]] = fir.field_index inner, !fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}>
! CHECK: %[[COORD_INNER:.*]] = fir.coordinate_of %[[O]], %[[FIELD_INNER]] : (!fir.box<!fir.heap<!fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}>>>, !fir.field) -> !fir.ref<!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>> ! CHECK: %[[COORD_INNER:.*]] = fir.coordinate_of %[[O]], %[[FIELD_INNER]] : (!fir.box<!fir.heap<!fir.type<_QMpolymorphic_testTouter{inner:!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>}>>>, !fir.field) -> !fir.ref<!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>>
! CHECK: %{{.*}} = fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} unordered iter_args(%arg1 = %9) -> (!fir.array<5x!fir.logical<4>>) { ! CHECK: %{{.*}} = fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} unordered iter_args(%arg1 = %{{.*}}) -> (!fir.array<5x!fir.logical<4>>) {
! CHECK: %[[EMBOXED:.*]] = fir.embox %[[COORD_INNER]] : (!fir.ref<!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>>) -> !fir.class<!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>> ! CHECK: %[[EMBOXED:.*]] = fir.embox %[[COORD_INNER]] : (!fir.ref<!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>>) -> !fir.class<!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>>
! CHECK: %{{.*}} = fir.call @_QMpolymorphic_testPlt(%17, %[[EMBOXED]]) {{.*}} : (!fir.ref<i32>, !fir.class<!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>>) -> !fir.logical<4> ! CHECK: %{{.*}} = fir.call @_QMpolymorphic_testPlt(%{{.*}}, %[[EMBOXED]]) {{.*}} : (!fir.ref<i32>, !fir.class<!fir.type<_QMpolymorphic_testTp1{a:i32,b:i32}>>) -> !fir.logical<4>
! CHECK: } ! CHECK: }

View File

@ -42,7 +42,8 @@ TEST(AllocatableCUFTest, SimpleDeviceAllocatable) {
CUDA_REPORT_IF_ERROR(cudaMalloc(&device_desc, a->SizeInBytes())); CUDA_REPORT_IF_ERROR(cudaMalloc(&device_desc, a->SizeInBytes()));
RTNAME(AllocatableAllocate) RTNAME(AllocatableAllocate)
(*a, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__, __LINE__); (*a, /*asyncId=*/-1, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__,
__LINE__);
EXPECT_TRUE(a->IsAllocated()); EXPECT_TRUE(a->IsAllocated());
RTNAME(CUFDescriptorSync)(device_desc, a.get(), __FILE__, __LINE__); RTNAME(CUFDescriptorSync)(device_desc, a.get(), __FILE__, __LINE__);
cudaDeviceSynchronize(); cudaDeviceSynchronize();

View File

@ -35,7 +35,8 @@ TEST(AllocatableCUFTest, SimpleDeviceAllocate) {
EXPECT_FALSE(a->HasAddendum()); EXPECT_FALSE(a->HasAddendum());
RTNAME(AllocatableSetBounds)(*a, 0, 1, 10); RTNAME(AllocatableSetBounds)(*a, 0, 1, 10);
RTNAME(AllocatableAllocate) RTNAME(AllocatableAllocate)
(*a, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__, __LINE__); (*a, /*asyncId=*/-1, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__,
__LINE__);
EXPECT_TRUE(a->IsAllocated()); EXPECT_TRUE(a->IsAllocated());
RTNAME(AllocatableDeallocate) RTNAME(AllocatableDeallocate)
(*a, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__, __LINE__); (*a, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__, __LINE__);
@ -53,7 +54,8 @@ TEST(AllocatableCUFTest, SimplePinnedAllocate) {
EXPECT_FALSE(a->HasAddendum()); EXPECT_FALSE(a->HasAddendum());
RTNAME(AllocatableSetBounds)(*a, 0, 1, 10); RTNAME(AllocatableSetBounds)(*a, 0, 1, 10);
RTNAME(AllocatableAllocate) RTNAME(AllocatableAllocate)
(*a, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__, __LINE__); (*a, /*asyncId=*/-1, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__,
__LINE__);
EXPECT_TRUE(a->IsAllocated()); EXPECT_TRUE(a->IsAllocated());
RTNAME(AllocatableDeallocate) RTNAME(AllocatableDeallocate)
(*a, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__, __LINE__); (*a, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__, __LINE__);

View File

@ -51,7 +51,8 @@ TEST(MemoryCUFTest, CUFDataTransferDescDesc) {
EXPECT_EQ((int)kDeviceAllocatorPos, dev->GetAllocIdx()); EXPECT_EQ((int)kDeviceAllocatorPos, dev->GetAllocIdx());
RTNAME(AllocatableSetBounds)(*dev, 0, 1, 10); RTNAME(AllocatableSetBounds)(*dev, 0, 1, 10);
RTNAME(AllocatableAllocate) RTNAME(AllocatableAllocate)
(*dev, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__, __LINE__); (*dev, /*asyncId=*/-1, /*hasStat=*/false, /*errMsg=*/nullptr, __FILE__,
__LINE__);
EXPECT_TRUE(dev->IsAllocated()); EXPECT_TRUE(dev->IsAllocated());
// Create temp array to transfer to device. // Create temp array to transfer to device.