[mlir] [linalg] Add pattern to swap transpose with broadcast (#97063)

Add a pattern that implement:

  transpose(broadcast(input)) -> broadcast(transpose(input))
This commit is contained in:
donald chen 2024-07-23 12:52:25 +08:00 committed by GitHub
parent d7e8a7487c
commit 9cc11b98a7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 168 additions and 2 deletions

View File

@ -243,6 +243,14 @@ SmallVector<int64_t>
computePermutationVector(int64_t permSize, ArrayRef<int64_t> positions,
ArrayRef<int64_t> desiredPositions);
/// Returns a permutation vector that drop the input dims in
/// dropPositions from inputPerm.
///
/// For example, inputPerm = {2, 4, 0, 1, 3} and dropPositions= {1, 2} would
/// result in a {2, 0, 1} permutation vector.
SmallVector<int64_t> dropDims(ArrayRef<int64_t> inputPerm,
ArrayRef<int64_t> dropPositions);
/// Helper to return a subset of `arrayAttr` as a vector of int64_t.
// TODO: Port everything relevant to DenseArrayAttr and drop this util.
SmallVector<int64_t> getI64SubArray(ArrayAttr arrayAttr, unsigned dropFront = 0,

View File

@ -1895,9 +1895,68 @@ struct FoldTransposeWithTranspose : OpRewritePattern<linalg::TransposeOp> {
}
};
/// This pattern canonicalize transpose by swapping the order of
/// broadcast and transpose:
/// transpose(broadcast(input)) -> broadcast(transpose(input))
struct SwapTransposeWithBroadcast : OpRewritePattern<linalg::TransposeOp> {
using OpRewritePattern<linalg::TransposeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(linalg::TransposeOp transposeOp,
PatternRewriter &rewriter) const override {
Value input = transposeOp.getInput();
BroadcastOp broadcastOp = input.getDefiningOp<BroadcastOp>();
if (!input.hasOneUse() || !broadcastOp)
return failure();
ArrayRef<int64_t> dimensions = broadcastOp.getDimensions();
ArrayRef<int64_t> perms = transposeOp.getPermutation();
// Get new perms and new dimensions.
SmallVector<int64_t> resultPerms = dropDims(perms, dimensions);
SmallVector<int64_t> invertPerm = invertPermutationVector(perms);
SmallVector<int64_t> resultDimensions;
unsigned dimensionSize = dimensions.size();
for (unsigned i = 0; i < dimensionSize; ++i)
resultDimensions.push_back(invertPerm[dimensions[i]]);
// Create transpose result.
Value broadcastInput = broadcastOp.getInput();
Location loc = transposeOp.getLoc();
MLIRContext *ctx = transposeOp.getContext();
SmallVector<OpFoldResult> dims;
auto broadcastInputTy =
mlir::cast<RankedTensorType>(broadcastInput.getType());
unsigned inputRank = broadcastInputTy.getRank();
for (unsigned i = 0; i < inputRank; ++i) {
if (broadcastInputTy.isDynamicDim(i)) {
dims.push_back(rewriter.create<tensor::DimOp>(loc, broadcastInput, i)
->getResult(0));
} else {
dims.push_back(IntegerAttr::get(IndexType::get(ctx),
broadcastInputTy.getDimSize(i)));
}
}
SmallVector<OpFoldResult> transposeResultShapes =
applyPermutation(dims, resultPerms);
Value transposeInit = rewriter.create<tensor::EmptyOp>(
transposeOp.getLoc(), transposeResultShapes,
broadcastInputTy.getElementType());
// Create broadcast(transpose(input)).
Value transposeResult =
rewriter
.create<TransposeOp>(loc, broadcastOp.getInput(), transposeInit,
resultPerms)
->getResult(0);
rewriter.replaceOpWithNewOp<BroadcastOp>(
transposeOp, transposeResult, transposeOp.getInit(), resultDimensions);
return success();
}
};
void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldTransposeWithTranspose>(context);
results.add<FoldTransposeWithTranspose, SwapTransposeWithBroadcast>(context);
}
//===----------------------------------------------------------------------===//

View File

@ -252,6 +252,32 @@ mlir::computePermutationVector(int64_t permSize, ArrayRef<int64_t> positions,
return res;
}
SmallVector<int64_t> mlir::dropDims(ArrayRef<int64_t> inputPerm,
ArrayRef<int64_t> dropPositions) {
assert(inputPerm.size() >= dropPositions.size() &&
"expect inputPerm size large than position to drop");
SmallVector<int64_t> res;
unsigned permSize = inputPerm.size();
for (unsigned inputIndex = 0; inputIndex < permSize; ++inputIndex) {
int64_t targetIndex = inputPerm[inputIndex];
bool shouldDrop = false;
unsigned dropSize = dropPositions.size();
for (unsigned dropIndex = 0; dropIndex < dropSize; dropIndex++) {
if (dropPositions[dropIndex] == inputPerm[inputIndex]) {
shouldDrop = true;
break;
}
if (dropPositions[dropIndex] < inputPerm[inputIndex]) {
targetIndex--;
}
}
if (!shouldDrop) {
res.push_back(targetIndex);
}
}
return res;
}
SmallVector<int64_t> mlir::getI64SubArray(ArrayAttr arrayAttr,
unsigned dropFront,
unsigned dropBack) {

View File

@ -1017,7 +1017,7 @@ func.func @broadcast_same_shape(%input: tensor<2x3xf32>, %init: tensor<2x3xf32>)
return %0 : tensor<2x3xf32>
}
// ----
// -----
func.func @transpose_1d(%input: tensor<16xf32>,
%init: tensor<16xf32>) -> tensor<16xf32> {
@ -1096,3 +1096,76 @@ func.func @transpose_transpose_fold(%input: tensor<5x4x3xf32>,
func.return %transpose2 : tensor<3x4x5xf32>
}
// -----
func.func @broadcast_transpose_fold(%input: tensor<2x4x5xf32>,
%init1: tensor<1x2x3x4x5x6xf32>,
%init2: tensor<1x6x2x3x5x4xf32>) -> tensor<1x6x2x3x5x4xf32> {
// CHECK-LABEL: @broadcast_transpose_fold
// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]+]]: tensor<2x4x5xf32>
// CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<1x2x3x4x5x6xf32>
// CHECK-SAME: %[[INIT2:[a-zA-Z0-9]+]]: tensor<1x6x2x3x5x4xf32>
// CHECK: %[[TMP_INIT:.+]] = tensor.empty() : tensor<2x5x4xf32>
// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[INPUT]] : tensor<2x4x5xf32>) outs(%[[TMP_INIT]] : tensor<2x5x4xf32>) permutation = [0, 2, 1]
// CHECK: %[[BROADCAST:.+]] = linalg.broadcast ins(%[[TRANSPOSE]] : tensor<2x5x4xf32>) outs(%[[INIT2]] : tensor<1x6x2x3x5x4xf32>) dimensions = [0, 3, 1]
// CHECK: return %[[BROADCAST]] : tensor<1x6x2x3x5x4xf32>
%broadcast = linalg.broadcast
ins(%input : tensor<2x4x5xf32>)
outs(%init1 : tensor<1x2x3x4x5x6xf32>)
dimensions = [0, 2, 5]
%transpose = linalg.transpose
ins(%broadcast : tensor<1x2x3x4x5x6xf32>)
outs(%init2 : tensor<1x6x2x3x5x4xf32>)
permutation = [0, 5, 1, 2, 4, 3]
func.return %transpose : tensor<1x6x2x3x5x4xf32>
}
// -----
func.func @broadcast_transpose_fold_dynamic(%input: tensor<?x?x5xf32>,
%init1: tensor<1x?x3x?x5x6xf32>,
%init2: tensor<1x3x?x6x5x?xf32>) -> tensor<1x3x?x6x5x?xf32> {
// CHECK-LABEL: @broadcast_transpose_fold_dynamic
// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]+]]: tensor<?x?x5xf32>
// CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<1x?x3x?x5x6xf32>
// CHECK-SAME: %[[INIT2:[a-zA-Z0-9]+]]: tensor<1x3x?x6x5x?xf32>
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM0:.+]] = tensor.dim %[[INPUT]], %[[C0]] : tensor<?x?x5xf32>
// CHECK: %[[DIM1:.+]] = tensor.dim %[[INPUT]], %[[C1]] : tensor<?x?x5xf32>
// CHECK: %[[TMP_INIT:.+]] = tensor.empty(%[[DIM1]], %[[DIM0]]) : tensor<?x5x?xf32>
// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[INPUT]] : tensor<?x?x5xf32>) outs(%[[TMP_INIT]] : tensor<?x5x?xf32>) permutation = [1, 2, 0]
// CHECK: %[[BROADCAST:.+]] = linalg.broadcast ins(%[[TRANSPOSE]] : tensor<?x5x?xf32>) outs(%[[INIT2]] : tensor<1x3x?x6x5x?xf32>) dimensions = [0, 1, 3]
// CHECK: return %[[BROADCAST]] : tensor<1x3x?x6x5x?xf32>
%broadcast = linalg.broadcast
ins(%input : tensor<?x?x5xf32>)
outs(%init1 : tensor<1x?x3x?x5x6xf32>)
dimensions = [0, 2, 5]
%transpose = linalg.transpose
ins(%broadcast : tensor<1x?x3x?x5x6xf32>)
outs(%init2 : tensor<1x3x?x6x5x?xf32>)
permutation = [0, 2, 3, 5, 4, 1]
func.return %transpose : tensor<1x3x?x6x5x?xf32>
}
// -----
func.func @broadcast_transpose_fold_2dim(%input: tensor<2xf32>,
%init1: tensor<2x4xf32>,
%init2: tensor<4x2xf32>) -> tensor<4x2xf32> {
// CHECK-LABEL: @broadcast_transpose_fold_2dim
// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]+]]: tensor<2xf32>
// CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<2x4xf32>
// CHECK-SAME: %[[INIT2:[a-zA-Z0-9]+]]: tensor<4x2xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.broadcast ins(%[[INPUT]] : tensor<2xf32>) outs(%[[INIT2]] : tensor<4x2xf32>) dimensions = [0]
// CHECK: return %[[BROADCAST]] : tensor<4x2xf32>
%broadcast = linalg.broadcast
ins(%input : tensor<2xf32>)
outs(%init1 : tensor<2x4xf32>)
dimensions = [1]
%transpose = linalg.transpose
ins(%broadcast : tensor<2x4xf32>)
outs(%init2 : tensor<4x2xf32>)
permutation = [1, 0]
func.return %transpose : tensor<4x2xf32>
}