Introduce DIExpression::foldConstantMath() (#71718)

DIExpressions can get very long and have a lot of redundant operations.
This function uses simple pattern matching to fold constant math that
can be evaluated at compile time.

The hope is that other people can contribute other patterns as well.

I also couldn't see a good way of combining this with
`DIExpression::constantFold` so it stands alone.

This is part of a stack of patches and comes after
https://github.com/llvm/llvm-project/pull/69768
https://github.com/llvm/llvm-project/pull/71717
This commit is contained in:
Shubham Sandeep Rastogi 2024-05-29 16:09:59 -07:00 committed by GitHub
parent e06e680a97
commit b12f81b53a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 841 additions and 1 deletions

View File

@ -3121,6 +3121,11 @@ public:
/// expression and constant on failure.
std::pair<DIExpression *, const ConstantInt *>
constantFold(const ConstantInt *CI);
/// Try to shorten an expression with constant math operations that can be
/// evaluated at compile time. Returns a new expression on success, or the old
/// expression if there is nothing to be reduced.
DIExpression *foldConstantMath();
};
inline bool operator==(const DIExpression::FragmentInfo &A,

View File

@ -17,6 +17,7 @@ add_llvm_component_library(LLVMCore
DataLayout.cpp
DebugInfo.cpp
DebugInfoMetadata.cpp
DIExpressionOptimizer.cpp
DebugProgramInstruction.cpp
DebugLoc.cpp
DiagnosticHandler.cpp

View File

@ -0,0 +1,378 @@
//===- DIExpressionOptimizer.cpp - Constant folding of DIExpressions ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions to constant fold DIExpressions. Which were
// declared in DIExpressionOptimizer.h
//
//===----------------------------------------------------------------------===//
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/DebugInfoMetadata.h"
using namespace llvm;
/// Returns true if the Op is a DW_OP_constu.
static std::optional<uint64_t> isConstantVal(DIExpression::ExprOperand Op) {
if (Op.getOp() == dwarf::DW_OP_constu)
return Op.getArg(0);
return std::nullopt;
}
/// Returns true if an operation and operand result in a No Op.
static bool isNeutralElement(uint64_t Op, uint64_t Val) {
switch (Op) {
case dwarf::DW_OP_plus:
case dwarf::DW_OP_minus:
case dwarf::DW_OP_shl:
case dwarf::DW_OP_shr:
return Val == 0;
case dwarf::DW_OP_mul:
case dwarf::DW_OP_div:
return Val == 1;
default:
return false;
}
}
/// Try to fold \p Const1 and \p Const2 by applying \p Operator and returning
/// the result, if there is an overflow, return a std::nullopt.
static std::optional<uint64_t>
foldOperationIfPossible(uint64_t Const1, uint64_t Const2,
dwarf::LocationAtom Operator) {
bool ResultOverflowed;
switch (Operator) {
case dwarf::DW_OP_plus: {
auto Result = SaturatingAdd(Const1, Const2, &ResultOverflowed);
if (ResultOverflowed)
return std::nullopt;
return Result;
}
case dwarf::DW_OP_minus: {
if (Const1 < Const2)
return std::nullopt;
return Const1 - Const2;
}
case dwarf::DW_OP_shl: {
if ((uint64_t)countl_zero(Const1) < Const2)
return std::nullopt;
return Const1 << Const2;
}
case dwarf::DW_OP_shr: {
if ((uint64_t)countr_zero(Const1) < Const2)
return std::nullopt;
return Const1 >> Const2;
}
case dwarf::DW_OP_mul: {
auto Result = SaturatingMultiply(Const1, Const2, &ResultOverflowed);
if (ResultOverflowed)
return std::nullopt;
return Result;
}
case dwarf::DW_OP_div: {
if (Const2)
return Const1 / Const2;
return std::nullopt;
}
default:
return std::nullopt;
}
}
/// Returns true if the two operations \p Operator1 and \p Operator2 are
/// commutative and can be folded.
static bool operationsAreFoldableAndCommutative(dwarf::LocationAtom Operator1,
dwarf::LocationAtom Operator2) {
return Operator1 == Operator2 &&
(Operator1 == dwarf::DW_OP_plus || Operator1 == dwarf::DW_OP_mul);
}
/// Consume one operator and its operand(s).
static void consumeOneOperator(DIExpressionCursor &Cursor, uint64_t &Loc,
const DIExpression::ExprOperand &Op) {
Cursor.consume(1);
Loc = Loc + Op.getSize();
}
/// Reset the Cursor to the beginning of the WorkingOps.
void startFromBeginning(uint64_t &Loc, DIExpressionCursor &Cursor,
ArrayRef<uint64_t> WorkingOps) {
Cursor.assignNewExpr(WorkingOps);
Loc = 0;
}
/// This function will canonicalize:
/// 1. DW_OP_plus_uconst to DW_OP_constu <const-val> DW_OP_plus
/// 2. DW_OP_lit<n> to DW_OP_constu <n>
static SmallVector<uint64_t>
canonicalizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) {
DIExpressionCursor Cursor(WorkingOps);
uint64_t Loc = 0;
SmallVector<uint64_t> ResultOps;
while (Loc < WorkingOps.size()) {
auto Op = Cursor.peek();
/// Expression has no operations, break.
if (!Op)
break;
auto OpRaw = Op->getOp();
if (OpRaw >= dwarf::DW_OP_lit0 && OpRaw <= dwarf::DW_OP_lit31) {
ResultOps.push_back(dwarf::DW_OP_constu);
ResultOps.push_back(OpRaw - dwarf::DW_OP_lit0);
consumeOneOperator(Cursor, Loc, *Cursor.peek());
continue;
}
if (OpRaw == dwarf::DW_OP_plus_uconst) {
ResultOps.push_back(dwarf::DW_OP_constu);
ResultOps.push_back(Op->getArg(0));
ResultOps.push_back(dwarf::DW_OP_plus);
consumeOneOperator(Cursor, Loc, *Cursor.peek());
continue;
}
uint64_t PrevLoc = Loc;
consumeOneOperator(Cursor, Loc, *Cursor.peek());
ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
}
return ResultOps;
}
/// This function will convert:
/// 1. DW_OP_constu <const-val> DW_OP_plus to DW_OP_plus_uconst
/// 2. DW_OP_constu, 0 to DW_OP_lit0
static SmallVector<uint64_t>
optimizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) {
DIExpressionCursor Cursor(WorkingOps);
uint64_t Loc = 0;
SmallVector<uint64_t> ResultOps;
while (Loc < WorkingOps.size()) {
auto Op1 = Cursor.peek();
/// Expression has no operations, exit.
if (!Op1)
break;
auto Op1Raw = Op1->getOp();
if (Op1Raw == dwarf::DW_OP_constu && Op1->getArg(0) == 0) {
ResultOps.push_back(dwarf::DW_OP_lit0);
consumeOneOperator(Cursor, Loc, *Cursor.peek());
continue;
}
auto Op2 = Cursor.peekNext();
/// Expression has no more operations, copy into ResultOps and exit.
if (!Op2) {
uint64_t PrevLoc = Loc;
consumeOneOperator(Cursor, Loc, *Cursor.peek());
ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
break;
}
auto Op2Raw = Op2->getOp();
if (Op1Raw == dwarf::DW_OP_constu && Op2Raw == dwarf::DW_OP_plus) {
ResultOps.push_back(dwarf::DW_OP_plus_uconst);
ResultOps.push_back(Op1->getArg(0));
consumeOneOperator(Cursor, Loc, *Cursor.peek());
consumeOneOperator(Cursor, Loc, *Cursor.peek());
continue;
}
uint64_t PrevLoc = Loc;
consumeOneOperator(Cursor, Loc, *Cursor.peek());
ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
}
return ResultOps;
}
/// {DW_OP_constu, 0, DW_OP_[plus, minus, shl, shr]} -> {}
/// {DW_OP_constu, 1, DW_OP_[mul, div]} -> {}
static bool tryFoldNoOpMath(uint64_t Const1,
ArrayRef<DIExpression::ExprOperand> Ops,
uint64_t &Loc, DIExpressionCursor &Cursor,
SmallVectorImpl<uint64_t> &WorkingOps) {
if (isNeutralElement(Ops[1].getOp(), Const1)) {
WorkingOps.erase(WorkingOps.begin() + Loc, WorkingOps.begin() + Loc + 3);
startFromBeginning(Loc, Cursor, WorkingOps);
return true;
}
return false;
}
/// {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_[plus,
/// minus, mul, div, shl, shr] -> {DW_OP_constu, Const1 [+, -, *, /, <<, >>]
/// Const2}
static bool tryFoldConstants(uint64_t Const1,
ArrayRef<DIExpression::ExprOperand> Ops,
uint64_t &Loc, DIExpressionCursor &Cursor,
SmallVectorImpl<uint64_t> &WorkingOps) {
auto Const2 = isConstantVal(Ops[1]);
if (!Const2)
return false;
auto Result = foldOperationIfPossible(
Const1, *Const2, static_cast<dwarf::LocationAtom>(Ops[2].getOp()));
if (!Result) {
consumeOneOperator(Cursor, Loc, Ops[0]);
return true;
}
WorkingOps.erase(WorkingOps.begin() + Loc + 2, WorkingOps.begin() + Loc + 5);
WorkingOps[Loc] = dwarf::DW_OP_constu;
WorkingOps[Loc + 1] = *Result;
startFromBeginning(Loc, Cursor, WorkingOps);
return true;
}
/// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_constu, Const2,
/// DW_OP_[plus, mul]} -> {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus,
/// mul]}
static bool tryFoldCommutativeMath(uint64_t Const1,
ArrayRef<DIExpression::ExprOperand> Ops,
uint64_t &Loc, DIExpressionCursor &Cursor,
SmallVectorImpl<uint64_t> &WorkingOps) {
auto Const2 = isConstantVal(Ops[2]);
auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp());
auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp());
if (!Const2 || !operationsAreFoldableAndCommutative(Operand1, Operand2))
return false;
auto Result = foldOperationIfPossible(Const1, *Const2, Operand1);
if (!Result) {
consumeOneOperator(Cursor, Loc, Ops[0]);
return true;
}
WorkingOps.erase(WorkingOps.begin() + Loc + 3, WorkingOps.begin() + Loc + 6);
WorkingOps[Loc] = dwarf::DW_OP_constu;
WorkingOps[Loc + 1] = *Result;
startFromBeginning(Loc, Cursor, WorkingOps);
return true;
}
/// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_LLVM_arg, Arg1,
/// DW_OP_[plus, mul], DW_OP_constu, Const2, DW_OP_[plus, mul]} ->
/// {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus, mul], DW_OP_LLVM_arg,
/// Arg1, DW_OP_[plus, mul]}
static bool tryFoldCommutativeMathWithArgInBetween(
uint64_t Const1, ArrayRef<DIExpression::ExprOperand> Ops, uint64_t &Loc,
DIExpressionCursor &Cursor, SmallVectorImpl<uint64_t> &WorkingOps) {
auto Const2 = isConstantVal(Ops[4]);
auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp());
auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp());
auto Operand3 = static_cast<dwarf::LocationAtom>(Ops[5].getOp());
if (!Const2 || Ops[2].getOp() != dwarf::DW_OP_LLVM_arg ||
!operationsAreFoldableAndCommutative(Operand1, Operand2) ||
!operationsAreFoldableAndCommutative(Operand2, Operand3))
return false;
auto Result = foldOperationIfPossible(Const1, *Const2, Operand1);
if (!Result) {
consumeOneOperator(Cursor, Loc, Ops[0]);
return true;
}
WorkingOps.erase(WorkingOps.begin() + Loc + 6, WorkingOps.begin() + Loc + 9);
WorkingOps[Loc] = dwarf::DW_OP_constu;
WorkingOps[Loc + 1] = *Result;
startFromBeginning(Loc, Cursor, WorkingOps);
return true;
}
DIExpression *DIExpression::foldConstantMath() {
SmallVector<uint64_t, 8> WorkingOps(Elements.begin(), Elements.end());
uint64_t Loc = 0;
SmallVector<uint64_t> ResultOps = canonicalizeDwarfOperations(WorkingOps);
DIExpressionCursor Cursor(ResultOps);
SmallVector<DIExpression::ExprOperand, 8> Ops;
// Iterate over all Operations in a DIExpression to match the smallest pattern
// that can be folded.
while (Loc < ResultOps.size()) {
Ops.clear();
auto Op = Cursor.peek();
// Expression has no operations, exit.
if (!Op)
break;
auto Const1 = isConstantVal(*Op);
if (!Const1) {
// Early exit, all of the following patterns start with a constant value.
consumeOneOperator(Cursor, Loc, *Op);
continue;
}
Ops.push_back(*Op);
Op = Cursor.peekNext();
// All following patterns require at least 2 Operations, exit.
if (!Op)
break;
Ops.push_back(*Op);
// Try to fold a constant no-op, such as {+ 0}
if (tryFoldNoOpMath(*Const1, Ops, Loc, Cursor, ResultOps))
continue;
Op = Cursor.peekNextN(2);
// Op[1] could still match a pattern, skip iteration.
if (!Op) {
consumeOneOperator(Cursor, Loc, Ops[0]);
continue;
}
Ops.push_back(*Op);
// Try to fold a pattern of two constants such as {C1 + C2}.
if (tryFoldConstants(*Const1, Ops, Loc, Cursor, ResultOps))
continue;
Op = Cursor.peekNextN(3);
// Op[1] and Op[2] could still match a pattern, skip iteration.
if (!Op) {
consumeOneOperator(Cursor, Loc, Ops[0]);
continue;
}
Ops.push_back(*Op);
// Try to fold commutative constant math, such as {C1 + C2 +}.
if (tryFoldCommutativeMath(*Const1, Ops, Loc, Cursor, ResultOps))
continue;
Op = Cursor.peekNextN(4);
if (!Op) {
consumeOneOperator(Cursor, Loc, Ops[0]);
continue;
}
Ops.push_back(*Op);
Op = Cursor.peekNextN(5);
if (!Op) {
consumeOneOperator(Cursor, Loc, Ops[0]);
continue;
}
Ops.push_back(*Op);
// Try to fold commutative constant math with an LLVM_Arg in between, such
// as {C1 + Arg + C2 +}.
if (tryFoldCommutativeMathWithArgInBetween(*Const1, Ops, Loc, Cursor,
ResultOps))
continue;
consumeOneOperator(Cursor, Loc, Ops[0]);
}
ResultOps = optimizeDwarfOperations(ResultOps);
auto *Result = DIExpression::get(getContext(), ResultOps);
assert(Result->isValid() && "concatenated expression is not valid");
return Result;
}

View File

@ -1880,7 +1880,6 @@ DIExpression *DIExpression::append(const DIExpression *Expr,
}
Op.appendToVector(NewOps);
}
NewOps.append(Ops.begin(), Ops.end());
auto *result = DIExpression::get(Expr->getContext(), NewOps);
assert(result->isValid() && "concatenated expression is not valid");

View File

@ -3153,6 +3153,463 @@ TEST_F(DIExpressionTest, get) {
EXPECT_EQ(N0WithPrependedOps, N2);
}
TEST_F(DIExpressionTest, Fold) {
// Remove a No-op DW_OP_plus_uconst from an expression.
SmallVector<uint64_t, 8> Ops = {dwarf::DW_OP_plus_uconst, 0};
auto *Expr = DIExpression::get(Context, Ops);
auto *E = Expr->foldConstantMath();
SmallVector<uint64_t, 8> ResOps;
auto *EmptyExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, EmptyExpr);
// Remove a No-op add from an expression.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(0);
Ops.push_back(dwarf::DW_OP_plus);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
EXPECT_EQ(E, EmptyExpr);
// Remove a No-op subtract from an expression.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(0);
Ops.push_back(dwarf::DW_OP_minus);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
EXPECT_EQ(E, EmptyExpr);
// Remove a No-op shift left from an expression.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(0);
Ops.push_back(dwarf::DW_OP_shl);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
EXPECT_EQ(E, EmptyExpr);
// Remove a No-op shift right from an expression.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(0);
Ops.push_back(dwarf::DW_OP_shr);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
EXPECT_EQ(E, EmptyExpr);
// Remove a No-op multiply from an expression.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(1);
Ops.push_back(dwarf::DW_OP_mul);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
EXPECT_EQ(E, EmptyExpr);
// Remove a No-op divide from an expression.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(1);
Ops.push_back(dwarf::DW_OP_div);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
EXPECT_EQ(E, EmptyExpr);
// Test fold {DW_OP_plus_uconst, Const1, DW_OP_plus_uconst, Const2} ->
// {DW_OP_plus_uconst, Const1 + Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(3);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.push_back(dwarf::DW_OP_plus_uconst);
ResOps.push_back(5);
auto *ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_plus_uconst, Const2} -> {DW_OP_constu,
// Const1 + Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(3);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(5);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_plus} ->
// {DW_OP_constu, Const1 + Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_plus);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(10);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_minus} ->
// {DW_OP_constu, Const1 - Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_minus);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(6);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_mul} ->
// {DW_OP_constu, Const1 * Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_mul);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(16);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_div} ->
// {DW_OP_constu, Const1 / Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_div);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(4);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_shl} ->
// {DW_OP_constu, Const1 << Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_shl);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(32);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_shr} ->
// {DW_OP_constu, Const1 >> Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_shr);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(2);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_plus_uconst, Const1, DW_OP_constu, Const2, DW_OP_plus} ->
// {DW_OP_plus_uconst, Const1 + Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_plus);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_plus_uconst);
ResOps.push_back(10);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_plus, DW_OP_plus_uconst, Const2} ->
// {DW_OP_plus_uconst, Const1 + Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_plus);
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(2);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_plus_uconst);
ResOps.push_back(10);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_plus, DW_OP_constu, Const2, DW_OP_plus}
// -> {DW_OP_plus_uconst, Const1 + Const2}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_plus);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_plus);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_plus_uconst);
ResOps.push_back(10);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_mul, DW_OP_constu, Const2, DW_OP_mul} ->
// {DW_OP_constu, Const1 * Const2, DW_OP_mul}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_mul);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(16);
ResOps.push_back(dwarf::DW_OP_mul);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_plus_uconst, Const1, DW_OP_plus, DW_OP_LLVM_arg, Arg,
// DW_OP_plus, DW_OP_constu, Const2, DW_OP_plus} -> {DW_OP_plus_uconst, Const1
// + Const2, DW_OP_LLVM_arg, Arg, DW_OP_plus}
Ops.clear();
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_LLVM_arg);
Ops.push_back(0);
Ops.push_back(dwarf::DW_OP_plus);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_plus);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_plus_uconst);
ResOps.push_back(10);
ResOps.push_back(dwarf::DW_OP_LLVM_arg);
ResOps.push_back(0);
ResOps.push_back(dwarf::DW_OP_plus);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_plus, DW_OP_LLVM_arg, Arg, DW_OP_plus,
// DW_OP_plus_uconst, Const2} -> {DW_OP_constu, Const1 + Const2, DW_OP_plus,
// DW_OP_LLVM_arg, Arg, DW_OP_plus}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_plus);
Ops.push_back(dwarf::DW_OP_LLVM_arg);
Ops.push_back(0);
Ops.push_back(dwarf::DW_OP_plus);
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(2);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_plus_uconst);
ResOps.push_back(10);
ResOps.push_back(dwarf::DW_OP_LLVM_arg);
ResOps.push_back(0);
ResOps.push_back(dwarf::DW_OP_plus);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_plus, DW_OP_LLVM_arg, Arg, DW_OP_plus,
// DW_OP_constu, Const2, DW_OP_plus} -> {DW_OP_constu, Const1 + Const2,
// DW_OP_plus, DW_OP_LLVM_arg, Arg, DW_OP_plus}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_plus);
Ops.push_back(dwarf::DW_OP_LLVM_arg);
Ops.push_back(0);
Ops.push_back(dwarf::DW_OP_plus);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_plus);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_plus_uconst);
ResOps.push_back(10);
ResOps.push_back(dwarf::DW_OP_LLVM_arg);
ResOps.push_back(0);
ResOps.push_back(dwarf::DW_OP_plus);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test {DW_OP_constu, Const1, DW_OP_mul, DW_OP_LLVM_arg, Arg, DW_OP_mul,
// DW_OP_constu, Const2, DW_OP_mul} -> {DW_OP_constu, Const1 * Const2,
// DW_OP_mul, DW_OP_LLVM_arg, Arg, DW_OP_mul}
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(8);
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_LLVM_arg);
Ops.push_back(0);
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_mul);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(16);
ResOps.push_back(dwarf::DW_OP_mul);
ResOps.push_back(dwarf::DW_OP_LLVM_arg);
ResOps.push_back(0);
ResOps.push_back(dwarf::DW_OP_mul);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test an overflow addition.
Ops.clear();
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(UINT64_MAX);
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(2);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_plus_uconst);
ResOps.push_back(UINT64_MAX);
ResOps.push_back(dwarf::DW_OP_plus_uconst);
ResOps.push_back(2);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test an underflow subtraction.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(1);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_minus);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(1);
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(2);
ResOps.push_back(dwarf::DW_OP_minus);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test a left shift greater than 64.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(1);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(65);
Ops.push_back(dwarf::DW_OP_shl);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(1);
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(65);
ResOps.push_back(dwarf::DW_OP_shl);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test a right shift greater than 64.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(1);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(65);
Ops.push_back(dwarf::DW_OP_shr);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(1);
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(65);
ResOps.push_back(dwarf::DW_OP_shr);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test an overflow multiplication.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(UINT64_MAX);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_mul);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(UINT64_MAX);
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(2);
ResOps.push_back(dwarf::DW_OP_mul);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
// Test a divide by 0.
Ops.clear();
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(2);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(0);
Ops.push_back(dwarf::DW_OP_div);
Expr = DIExpression::get(Context, Ops);
E = Expr->foldConstantMath();
ResOps.clear();
ResOps.push_back(dwarf::DW_OP_constu);
ResOps.push_back(2);
ResOps.push_back(dwarf::DW_OP_lit0);
ResOps.push_back(dwarf::DW_OP_div);
ResExpr = DIExpression::get(Context, ResOps);
EXPECT_EQ(E, ResExpr);
}
TEST_F(DIExpressionTest, isValid) {
#define EXPECT_VALID(...) \
do { \