[HLSL] [DXIL] Implement the AddUint64 HLSL function and the UAddc DXIL op (#127137)

Fixes #99205.

- Implements the HLSL intrinsic `AddUint64` used to perform unsigned
64-bit integer addition by using pairs of unsigned 32-bit integers
instead of native 64-bit types
- The LLVM intrinsic `uadd_with_overflow` is used in the implementation
of `AddUint64` in `CGBuiltin.cpp`
- The DXIL op `UAddc` was defined in `DXIL.td`, and a lowering of the
LLVM intrinsic `uadd_with_overflow` to the `UAddc` DXIL op was
implemented in `DXILOpLowering.cpp`

Notes:
- `__builtin_addc` was not able to be used to implement `AddUint64` in
`hlsl_intrinsics.h` because its `CarryOut` argument is a pointer, and
pointers are not supported in HLSL
- A lowering of the LLVM intrinsic `uadd_with_overflow` to SPIR-V
[already
exists](https://github.com/llvm/llvm-project/blob/main/llvm/test/CodeGen/SPIRV/llvm-intrinsics/uadd.with.overflow.ll)
- When lowering the LLVM intrinsic `uadd_with_overflow` to the `UAddc`
DXIL op, the anonymous struct type `{ i32, i1 }` is replaced with a
named struct type `%dx.types.i32c`. This aspect of the implementation
may be changed when issue #113192 gets addressed
- Fixes issues mentioned in the comments on the original PR #125319

---------

Co-authored-by: Finn Plummer <50529406+inbelic@users.noreply.github.com>
Co-authored-by: Farzon Lotfi <farzonlotfi@microsoft.com>
Co-authored-by: Chris B <beanz@abolishcrlf.org>
Co-authored-by: Justin Bogner <mail@justinbogner.com>
This commit is contained in:
Deric C. 2025-03-05 17:04:10 -08:00 committed by GitHub
parent 5b3ba261c4
commit b4ecebe745
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 464 additions and 0 deletions

View File

@ -4765,6 +4765,12 @@ def GetDeviceSideMangledName : LangBuiltin<"CUDA_LANG"> {
}
// HLSL
def HLSLAddUint64: LangBuiltin<"HLSL_LANG"> {
let Spellings = ["__builtin_hlsl_adduint64"];
let Attributes = [NoThrow, Const];
let Prototype = "void(...)";
}
def HLSLResourceGetPointer : LangBuiltin<"HLSL_LANG"> {
let Spellings = ["__builtin_hlsl_resource_getpointer"];
let Attributes = [NoThrow];

View File

@ -10709,6 +10709,11 @@ def err_vector_incorrect_num_elements : Error<
"%select{too many|too few}0 elements in vector %select{initialization|operand}3 (expected %1 elements, have %2)">;
def err_altivec_empty_initializer : Error<"expected initializer">;
def err_vector_incorrect_bit_count : Error<
"incorrect number of bits in vector operand (expected %select{|a multiple of}0 %1 bits, have %2)">;
def err_integer_incorrect_bit_count : Error<
"incorrect number of bits in integer (expected %0 bits, have %1)">;
def err_invalid_neon_type_code : Error<
"incompatible constant for this __builtin_neon function">;
def err_argument_invalid_range : Error<

View File

@ -19470,6 +19470,62 @@ Value *CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID,
return nullptr;
switch (BuiltinID) {
case Builtin::BI__builtin_hlsl_adduint64: {
Value *OpA = EmitScalarExpr(E->getArg(0));
Value *OpB = EmitScalarExpr(E->getArg(1));
QualType Arg0Ty = E->getArg(0)->getType();
uint64_t NumElements = Arg0Ty->castAs<VectorType>()->getNumElements();
assert(Arg0Ty == E->getArg(1)->getType() &&
"AddUint64 operand types must match");
assert(Arg0Ty->hasIntegerRepresentation() &&
"AddUint64 operands must have an integer representation");
assert((NumElements == 2 || NumElements == 4) &&
"AddUint64 operands must have 2 or 4 elements");
llvm::Value *LowA;
llvm::Value *HighA;
llvm::Value *LowB;
llvm::Value *HighB;
// Obtain low and high words of inputs A and B
if (NumElements == 2) {
LowA = Builder.CreateExtractElement(OpA, (uint64_t)0, "LowA");
HighA = Builder.CreateExtractElement(OpA, (uint64_t)1, "HighA");
LowB = Builder.CreateExtractElement(OpB, (uint64_t)0, "LowB");
HighB = Builder.CreateExtractElement(OpB, (uint64_t)1, "HighB");
} else {
LowA = Builder.CreateShuffleVector(OpA, ArrayRef<int>{0, 2}, "LowA");
HighA = Builder.CreateShuffleVector(OpA, ArrayRef<int>{1, 3}, "HighA");
LowB = Builder.CreateShuffleVector(OpB, ArrayRef<int>{0, 2}, "LowB");
HighB = Builder.CreateShuffleVector(OpB, ArrayRef<int>{1, 3}, "HighB");
}
// Use an uadd_with_overflow to compute the sum of low words and obtain a
// carry value
llvm::Value *Carry;
llvm::Value *LowSum = EmitOverflowIntrinsic(
*this, llvm::Intrinsic::uadd_with_overflow, LowA, LowB, Carry);
llvm::Value *ZExtCarry =
Builder.CreateZExt(Carry, HighA->getType(), "CarryZExt");
// Sum the high words and the carry
llvm::Value *HighSum = Builder.CreateAdd(HighA, HighB, "HighSum");
llvm::Value *HighSumPlusCarry =
Builder.CreateAdd(HighSum, ZExtCarry, "HighSumPlusCarry");
if (NumElements == 4) {
return Builder.CreateShuffleVector(LowSum, HighSumPlusCarry,
ArrayRef<int>{0, 2, 1, 3},
"hlsl.AddUint64");
}
llvm::Value *Result = PoisonValue::get(OpA->getType());
Result = Builder.CreateInsertElement(Result, LowSum, (uint64_t)0,
"hlsl.AddUint64.upto0");
Result = Builder.CreateInsertElement(Result, HighSumPlusCarry, (uint64_t)1,
"hlsl.AddUint64");
return Result;
}
case Builtin::BI__builtin_hlsl_resource_getpointer: {
Value *HandleOp = EmitScalarExpr(E->getArg(0));
Value *IndexOp = EmitScalarExpr(E->getArg(1));

View File

@ -174,6 +174,27 @@ float3 acos(float3);
_HLSL_BUILTIN_ALIAS(__builtin_elementwise_acos)
float4 acos(float4);
//===----------------------------------------------------------------------===//
// AddUint64 builtins
//===----------------------------------------------------------------------===//
/// \fn T AddUint64(T a, T b)
/// \brief Implements unsigned 64-bit integer addition using pairs of unsigned
/// 32-bit integers.
/// \param x [in] The first unsigned 32-bit integer pair(s)
/// \param y [in] The second unsigned 32-bit integer pair(s)
///
/// This function takes one or two pairs (low, high) of unsigned 32-bit integer
/// values and returns pairs (low, high) of unsigned 32-bit integer
/// values representing the result of unsigned 64-bit integer addition.
_HLSL_AVAILABILITY(shadermodel, 6.0)
_HLSL_BUILTIN_ALIAS(__builtin_hlsl_adduint64)
uint32_t2 AddUint64(uint32_t2, uint32_t2);
_HLSL_AVAILABILITY(shadermodel, 6.0)
_HLSL_BUILTIN_ALIAS(__builtin_hlsl_adduint64)
uint32_t4 AddUint64(uint32_t4, uint32_t4);
//===----------------------------------------------------------------------===//
// all builtins
//===----------------------------------------------------------------------===//

View File

@ -2086,6 +2086,18 @@ static bool CheckAllArgsHaveFloatRepresentation(Sema *S, CallExpr *TheCall) {
checkAllFloatTypes);
}
static bool CheckUnsignedIntRepresentations(Sema *S, CallExpr *TheCall) {
auto checkUnsignedInteger = [](clang::QualType PassedType) -> bool {
clang::QualType BaseType =
PassedType->isVectorType()
? PassedType->getAs<clang::VectorType>()->getElementType()
: PassedType;
return !BaseType->isUnsignedIntegerType();
};
return CheckAllArgTypesAreCorrect(S, TheCall, S->Context.UnsignedIntTy,
checkUnsignedInteger);
}
static bool CheckFloatOrHalfRepresentations(Sema *S, CallExpr *TheCall) {
auto checkFloatorHalf = [](clang::QualType PassedType) -> bool {
clang::QualType BaseType =
@ -2277,6 +2289,52 @@ static bool CheckResourceHandle(
// returning an ExprError
bool SemaHLSL::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
switch (BuiltinID) {
case Builtin::BI__builtin_hlsl_adduint64: {
if (SemaRef.checkArgCount(TheCall, 2))
return true;
if (CheckVectorElementCallArgs(&SemaRef, TheCall))
return true;
if (CheckUnsignedIntRepresentations(&SemaRef, TheCall))
return true;
// CheckVectorElementCallArgs(...) guarantees both args are the same type.
assert(TheCall->getArg(0)->getType() == TheCall->getArg(1)->getType() &&
"Both args must be of the same type");
// ensure both args are vectors
auto *VTy = TheCall->getArg(0)->getType()->getAs<VectorType>();
if (!VTy) {
SemaRef.Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
<< TheCall->getDirectCallee() << /*all*/ 1;
return true;
}
// ensure arg integers are 32-bits
uint64_t ElementBitCount = getASTContext()
.getTypeSizeInChars(VTy->getElementType())
.getQuantity() *
8;
if (ElementBitCount != 32) {
SemaRef.Diag(TheCall->getBeginLoc(),
diag::err_integer_incorrect_bit_count)
<< 32 << ElementBitCount;
return true;
}
// ensure both args are vectors of total bit size of a multiple of 64
int NumElementsArg = VTy->getNumElements();
if (NumElementsArg != 2 && NumElementsArg != 4) {
SemaRef.Diag(TheCall->getBeginLoc(), diag::err_vector_incorrect_bit_count)
<< 1 /*a multiple of*/ << 64 << NumElementsArg * ElementBitCount;
return true;
}
ExprResult A = TheCall->getArg(0);
QualType ArgTyA = A.get()->getType();
// return type is the same as the input type
TheCall->setType(ArgTyA);
break;
}
case Builtin::BI__builtin_hlsl_resource_getpointer: {
if (SemaRef.checkArgCount(TheCall, 2) ||
CheckResourceHandle(&SemaRef, TheCall, 0) ||

View File

@ -0,0 +1,58 @@
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py UTC_ARGS: --version 5
// RUN: %clang_cc1 -finclude-default-header -triple dxil-pc-shadermodel6.3-library %s \
// RUN: -emit-llvm -disable-llvm-passes -o - | \
// RUN: FileCheck %s --check-prefixes=CHECK
// CHECK-LABEL: define noundef <2 x i32> @_Z20test_AddUint64_uint2Dv2_jS_(
// CHECK-SAME: <2 x i32> noundef [[A:%.*]], <2 x i32> noundef [[B:%.*]]) #[[ATTR0:[0-9]+]] {
// CHECK-NEXT: [[ENTRY:.*:]]
// CHECK-NEXT: [[A_ADDR:%.*]] = alloca <2 x i32>, align 8
// CHECK-NEXT: [[B_ADDR:%.*]] = alloca <2 x i32>, align 8
// CHECK-NEXT: store <2 x i32> [[A]], ptr [[A_ADDR]], align 8
// CHECK-NEXT: store <2 x i32> [[B]], ptr [[B_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load <2 x i32>, ptr [[A_ADDR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <2 x i32>, ptr [[B_ADDR]], align 8
// CHECK-NEXT: [[LOWA:%.*]] = extractelement <2 x i32> [[TMP0]], i64 0
// CHECK-NEXT: [[HIGHA:%.*]] = extractelement <2 x i32> [[TMP0]], i64 1
// CHECK-NEXT: [[LOWB:%.*]] = extractelement <2 x i32> [[TMP1]], i64 0
// CHECK-NEXT: [[HIGHB:%.*]] = extractelement <2 x i32> [[TMP1]], i64 1
// CHECK-NEXT: [[TMP2:%.*]] = call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 [[LOWA]], i32 [[LOWB]])
// CHECK-NEXT: [[TMP3:%.*]] = extractvalue { i32, i1 } [[TMP2]], 1
// CHECK-NEXT: [[TMP4:%.*]] = extractvalue { i32, i1 } [[TMP2]], 0
// CHECK-NEXT: [[CARRYZEXT:%.*]] = zext i1 [[TMP3]] to i32
// CHECK-NEXT: [[HIGHSUM:%.*]] = add i32 [[HIGHA]], [[HIGHB]]
// CHECK-NEXT: [[HIGHSUMPLUSCARRY:%.*]] = add i32 [[HIGHSUM]], [[CARRYZEXT]]
// CHECK-NEXT: [[HLSL_ADDUINT64_UPTO0:%.*]] = insertelement <2 x i32> poison, i32 [[TMP4]], i64 0
// CHECK-NEXT: [[HLSL_ADDUINT64:%.*]] = insertelement <2 x i32> [[HLSL_ADDUINT64_UPTO0]], i32 [[HIGHSUMPLUSCARRY]], i64 1
// CHECK-NEXT: ret <2 x i32> [[HLSL_ADDUINT64]]
//
uint2 test_AddUint64_uint2(uint2 a, uint2 b) {
return AddUint64(a, b);
}
// CHECK-LABEL: define noundef <4 x i32> @_Z20test_AddUint64_uint4Dv4_jS_(
// CHECK-SAME: <4 x i32> noundef [[A:%.*]], <4 x i32> noundef [[B:%.*]]) #[[ATTR0]] {
// CHECK-NEXT: [[ENTRY:.*:]]
// CHECK-NEXT: [[A_ADDR:%.*]] = alloca <4 x i32>, align 16
// CHECK-NEXT: [[B_ADDR:%.*]] = alloca <4 x i32>, align 16
// CHECK-NEXT: store <4 x i32> [[A]], ptr [[A_ADDR]], align 16
// CHECK-NEXT: store <4 x i32> [[B]], ptr [[B_ADDR]], align 16
// CHECK-NEXT: [[TMP0:%.*]] = load <4 x i32>, ptr [[A_ADDR]], align 16
// CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, ptr [[B_ADDR]], align 16
// CHECK-NEXT: [[LOWA:%.*]] = shufflevector <4 x i32> [[TMP0]], <4 x i32> poison, <2 x i32> <i32 0, i32 2>
// CHECK-NEXT: [[HIGHA:%.*]] = shufflevector <4 x i32> [[TMP0]], <4 x i32> poison, <2 x i32> <i32 1, i32 3>
// CHECK-NEXT: [[LOWB:%.*]] = shufflevector <4 x i32> [[TMP1]], <4 x i32> poison, <2 x i32> <i32 0, i32 2>
// CHECK-NEXT: [[HIGHB:%.*]] = shufflevector <4 x i32> [[TMP1]], <4 x i32> poison, <2 x i32> <i32 1, i32 3>
// CHECK-NEXT: [[TMP2:%.*]] = call { <2 x i32>, <2 x i1> } @llvm.uadd.with.overflow.v2i32(<2 x i32> [[LOWA]], <2 x i32> [[LOWB]])
// CHECK-NEXT: [[TMP3:%.*]] = extractvalue { <2 x i32>, <2 x i1> } [[TMP2]], 1
// CHECK-NEXT: [[TMP4:%.*]] = extractvalue { <2 x i32>, <2 x i1> } [[TMP2]], 0
// CHECK-NEXT: [[CARRYZEXT:%.*]] = zext <2 x i1> [[TMP3]] to <2 x i32>
// CHECK-NEXT: [[HIGHSUM:%.*]] = add <2 x i32> [[HIGHA]], [[HIGHB]]
// CHECK-NEXT: [[HIGHSUMPLUSCARRY:%.*]] = add <2 x i32> [[HIGHSUM]], [[CARRYZEXT]]
// CHECK-NEXT: [[HLSL_ADDUINT64:%.*]] = shufflevector <2 x i32> [[TMP4]], <2 x i32> [[HIGHSUMPLUSCARRY]], <4 x i32> <i32 0, i32 2, i32 1, i32 3>
// CHECK-NEXT: ret <4 x i32> [[HLSL_ADDUINT64]]
//
uint4 test_AddUint64_uint4(uint4 a, uint4 b) {
return AddUint64(a, b);
}

View File

@ -0,0 +1,46 @@
// RUN: %clang_cc1 -finclude-default-header -triple dxil-pc-shadermodel6.6-library %s -fnative-half-type -emit-llvm-only -disable-llvm-passes -verify
uint2 test_too_few_arg() {
return __builtin_hlsl_adduint64();
// expected-error@-1 {{too few arguments to function call, expected 2, have 0}}
}
uint4 test_too_many_arg(uint4 a) {
return __builtin_hlsl_adduint64(a, a, a);
// expected-error@-1 {{too many arguments to function call, expected 2, have 3}}
}
uint2 test_mismatched_arg_types(uint2 a, uint4 b) {
return __builtin_hlsl_adduint64(a, b);
// expected-error@-1 {{all arguments to '__builtin_hlsl_adduint64' must have the same type}}
}
uint2 test_bad_num_arg_elements(uint3 a, uint3 b) {
return __builtin_hlsl_adduint64(a, b);
// expected-error@-1 {{incorrect number of bits in vector operand (expected a multiple of 64 bits, have 96)}}
}
uint2 test_scalar_arg_type(uint a) {
return __builtin_hlsl_adduint64(a, a);
// expected-error@-1 {{all arguments to '__builtin_hlsl_adduint64' must be vectors}}
}
uint2 test_uint64_args(uint16_t2 a) {
return __builtin_hlsl_adduint64(a, a);
// expected-error@-1 {{incorrect number of bits in integer (expected 32 bits, have 16)}}
}
uint2 test_signed_integer_args(int2 a, int2 b) {
return __builtin_hlsl_adduint64(a, b);
// expected-error@-1 {{passing 'int2' (aka 'vector<int, 2>') to parameter of incompatible type '__attribute__((__vector_size__(2 * sizeof(unsigned int)))) unsigned int' (vector of 2 'unsigned int' values)}}
}
struct S {
uint2 a;
};
uint2 test_incorrect_arg_type(S a) {
return __builtin_hlsl_adduint64(a, a);
// expected-error@-1 {{passing 'S' to parameter of incompatible type 'unsigned int'}}
}

View File

@ -56,6 +56,7 @@ def HandleTy : DXILOpParamType;
def ResBindTy : DXILOpParamType;
def ResPropsTy : DXILOpParamType;
def SplitDoubleTy : DXILOpParamType;
def BinaryWithCarryTy : DXILOpParamType;
class DXILOpClass;
@ -744,6 +745,16 @@ def UMin : DXILOp<40, binary> {
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def UAddc : DXILOp<44, binaryWithCarryOrBorrow > {
let Doc = "unsigned add of 32-bit operand with the carry";
let intrinsics = [IntrinSelect<int_uadd_with_overflow>];
let arguments = [OverloadTy, OverloadTy];
let result = BinaryWithCarryTy;
let overloads = [Overloads<DXIL1_0, [Int32Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def FMad : DXILOp<46, tertiary> {
let Doc = "Floating point arithmetic multiply/add operation. fmad(m,a,b) = m "
"* a + b.";

View File

@ -253,6 +253,14 @@ static StructType *getSplitDoubleType(LLVMContext &Context) {
return StructType::create({Int32Ty, Int32Ty}, "dx.types.splitdouble");
}
static StructType *getBinaryWithCarryType(LLVMContext &Context) {
if (auto *ST = StructType::getTypeByName(Context, "dx.types.i32c"))
return ST;
Type *Int32Ty = Type::getInt32Ty(Context);
Type *Int1Ty = Type::getInt1Ty(Context);
return StructType::create({Int32Ty, Int1Ty}, "dx.types.i32c");
}
static Type *getTypeFromOpParamType(OpParamType Kind, LLVMContext &Ctx,
Type *OverloadTy) {
switch (Kind) {
@ -308,6 +316,8 @@ static Type *getTypeFromOpParamType(OpParamType Kind, LLVMContext &Ctx,
return getResPropsType(Ctx);
case OpParamType::SplitDoubleTy:
return getSplitDoubleType(Ctx);
case OpParamType::BinaryWithCarryTy:
return getBinaryWithCarryType(Ctx);
}
llvm_unreachable("Invalid parameter kind");
return nullptr;

View File

@ -0,0 +1,75 @@
; RUN: opt -S -scalarizer -dxil-op-lower -mtriple=dxil-pc-shadermodel6.3-library %s | FileCheck %s
; This test exercises the lowering of the intrinsic @llvm.uadd.with.overflow.i32 to the UAddc DXIL op
; CHECK-DAG: [[DX_TYPES_I32C:%dx\.types\.i32c]] = type { i32, i1 }
; NOTE: The uint2 overload of AddUint64 HLSL uses @llvm.uadd.with.overflow.i32, resulting in one UAddc op
define noundef i32 @test_UAddc(i32 noundef %a, i32 noundef %b) {
; CHECK-LABEL: define noundef i32 @test_UAddc(
; CHECK-SAME: i32 noundef [[A:%.*]], i32 noundef [[B:%.*]]) {
; CHECK-NEXT: [[UADDC:%.*]] = call [[DX_TYPES_I32C]] @dx.op.binaryWithCarryOrBorrow.i32(i32 44, i32 [[A]], i32 [[B]]) #[[ATTR0:[0-9]+]]
; CHECK-NEXT: [[CARRY:%.*]] = extractvalue [[DX_TYPES_I32C]] [[UADDC]], 1
; CHECK-NEXT: [[SUM:%.*]] = extractvalue [[DX_TYPES_I32C]] [[UADDC]], 0
; CHECK-NEXT: [[CARRY_ZEXT:%.*]] = zext i1 [[CARRY]] to i32
; CHECK-NEXT: [[RESULT:%.*]] = add i32 [[SUM]], [[CARRY_ZEXT]]
; CHECK-NEXT: ret i32 [[RESULT]]
;
%uaddc = call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
%carry = extractvalue { i32, i1 } %uaddc, 1
%sum = extractvalue { i32, i1 } %uaddc, 0
%carry_zext = zext i1 %carry to i32
%result = add i32 %sum, %carry_zext
ret i32 %result
}
; NOTE: The uint4 overload of AddUint64 HLSL uses @llvm.uadd.with.overflow.v2i32, resulting in two UAddc ops after scalarization
define noundef <2 x i32> @test_UAddc_vec2(<2 x i32> noundef %a, <2 x i32> noundef %b) {
; CHECK-LABEL: define noundef <2 x i32> @test_UAddc_vec2(
; CHECK-SAME: <2 x i32> noundef [[A:%.*]], <2 x i32> noundef [[B:%.*]]) {
; CHECK-NEXT: [[A_I0:%.*]] = extractelement <2 x i32> [[A]], i64 0
; CHECK-NEXT: [[B_I0:%.*]] = extractelement <2 x i32> [[B]], i64 0
; CHECK-NEXT: [[UADDC_I0:%.*]] = call [[DX_TYPES_I32C]] @dx.op.binaryWithCarryOrBorrow.i32(i32 44, i32 [[A_I0]], i32 [[B_I0]]) #[[ATTR0]]
; CHECK-NEXT: [[A_I1:%.*]] = extractelement <2 x i32> [[A]], i64 1
; CHECK-NEXT: [[B_I1:%.*]] = extractelement <2 x i32> [[B]], i64 1
; CHECK-NEXT: [[UADDC_I1:%.*]] = call [[DX_TYPES_I32C]] @dx.op.binaryWithCarryOrBorrow.i32(i32 44, i32 [[A_I1]], i32 [[B_I1]]) #[[ATTR0]]
; CHECK-NEXT: [[CARRY_ELEM0:%.*]] = extractvalue [[DX_TYPES_I32C]] [[UADDC_I0]], 1
; CHECK-NEXT: [[CARRY_ELEM1:%.*]] = extractvalue [[DX_TYPES_I32C]] [[UADDC_I1]], 1
; CHECK-NEXT: [[CARRY_UPTO0:%.*]] = insertelement <2 x i1> poison, i1 [[CARRY_ELEM0]], i64 0
; CHECK-NEXT: [[CARRY:%.*]] = insertelement <2 x i1> [[CARRY_UPTO0]], i1 [[CARRY_ELEM1]], i64 1
; CHECK-NEXT: [[CARRY_I0:%.*]] = extractelement <2 x i1> [[CARRY]], i64 0
; CHECK-NEXT: [[CARRY_I1:%.*]] = extractelement <2 x i1> [[CARRY]], i64 1
; CHECK-NEXT: [[SUM_ELEM0:%.*]] = extractvalue [[DX_TYPES_I32C]] [[UADDC_I0]], 0
; CHECK-NEXT: [[SUM_ELEM1:%.*]] = extractvalue [[DX_TYPES_I32C]] [[UADDC_I1]], 0
; CHECK-NEXT: [[CARRY_ZEXT_I0:%.*]] = zext i1 [[CARRY_I0]] to i32
; CHECK-NEXT: [[CARRY_ZEXT_I1:%.*]] = zext i1 [[CARRY_I1]] to i32
; CHECK-NEXT: [[RESULT_I0:%.*]] = add i32 [[SUM_ELEM0]], [[CARRY_ZEXT_I0]]
; CHECK-NEXT: [[RESULT_I1:%.*]] = add i32 [[SUM_ELEM1]], [[CARRY_ZEXT_I1]]
; CHECK-NEXT: [[RESULT_UPTO0:%.*]] = insertelement <2 x i32> poison, i32 [[RESULT_I0]], i64 0
; CHECK-NEXT: [[RESULT:%.*]] = insertelement <2 x i32> [[RESULT_UPTO0]], i32 [[RESULT_I1]], i64 1
; CHECK-NEXT: ret <2 x i32> [[RESULT]]
;
%uaddc = call { <2 x i32>, <2 x i1> } @llvm.uadd.with.overflow.v2i32(<2 x i32> %a, <2 x i32> %b)
%carry = extractvalue { <2 x i32>, <2 x i1> } %uaddc, 1
%sum = extractvalue { <2 x i32>, <2 x i1> } %uaddc, 0
%carry_zext = zext <2 x i1> %carry to <2 x i32>
%result = add <2 x i32> %sum, %carry_zext
ret <2 x i32> %result
}
define noundef i32 @test_UAddc_insert(i32 noundef %a, i32 noundef %b) {
; CHECK-LABEL: define noundef i32 @test_UAddc_insert(
; CHECK-SAME: i32 noundef [[A:%.*]], i32 noundef [[B:%.*]]) {
; CHECK-NEXT: [[UADDC:%.*]] = call [[DX_TYPES_I32C]] @dx.op.binaryWithCarryOrBorrow.i32(i32 44, i32 [[A]], i32 [[B]]) #[[ATTR0]]
; CHECK-NEXT: [[UNUSED:%.*]] = insertvalue [[DX_TYPES_I32C]] [[UADDC]], i32 [[A]], 0
; CHECK-NEXT: [[RESULT:%.*]] = extractvalue [[DX_TYPES_I32C]] [[UADDC]], 0
; CHECK-NEXT: ret i32 [[RESULT]]
;
%uaddc = call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
insertvalue { i32, i1 } %uaddc, i32 %a, 0
%result = extractvalue { i32, i1 } %uaddc, 0
ret i32 %result
}
declare { i32, i1 } @llvm.uadd.with.overflow.i32(i32, i32)

View File

@ -0,0 +1,30 @@
; We use llc for this test so that we don't abort after the first error.
; RUN: not llc %s -o /dev/null 2>&1 | FileCheck %s
target triple = "dxil-pc-shadermodel6.3-library"
; DXIL operation UAddc only supports i32. Other integer types are unsupported.
; CHECK: error:
; CHECK-SAME: in function uaddc_i16
; CHECK-SAME: Cannot create UAddc operation: Invalid overload type
define noundef i16 @uaddc_i16(i16 noundef %a, i16 noundef %b) "hlsl.export" {
%uaddc = call { i16, i1 } @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
%carry = extractvalue { i16, i1 } %uaddc, 1
%sum = extractvalue { i16, i1 } %uaddc, 0
%carry_zext = zext i1 %carry to i16
%result = add i16 %sum, %carry_zext
ret i16 %result
}
; CHECK: error:
; CHECK-SAME: in function uaddc_return
; CHECK-SAME: DXIL ops that return structs may only be used by insert- and extractvalue
define noundef { i32, i1 } @uaddc_return(i32 noundef %a, i32 noundef %b) "hlsl.export" {
%uaddc = call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
ret { i32, i1 } %uaddc
}
declare { i16, i1 } @llvm.uadd.with.overflow.i16(i16, i16)

View File

@ -0,0 +1,88 @@
; RUN: llc -verify-machineinstrs -O0 -mtriple=spirv-unknown-unknown %s -o - | FileCheck %s
; RUN: %if spirv-tools %{ llc -O0 -mtriple=spirv-unknown-unknown %s -o - -filetype=obj | spirv-val %}
; Code here is an excerpt of clang/test/CodeGenHLSL/builtins/AddUint64.hlsl compiled for spirv using the following command
; clang -cc1 -finclude-default-header -triple spirv-unknown-vulkan-compute clang/test/CodeGenHLSL/builtins/AddUint64.hlsl -emit-llvm -disable-llvm-passes -o llvm/test/CodeGen/SPIRV/hlsl-intrinsics/uadd_with_overflow.ll
; CHECK-DAG: %[[#int_32:]] = OpTypeInt 32 0
; CHECK-DAG: %[[#vec2_int_32:]] = OpTypeVector %[[#int_32]] 2
; CHECK-DAG: %[[#bool:]] = OpTypeBool
; CHECK-DAG: %[[#const_i32_1:]] = OpConstant %[[#int_32]] 1
; CHECK-DAG: %[[#struct_i32_i32:]] = OpTypeStruct %[[#int_32]] %[[#int_32]]
; CHECK-DAG: %[[#func_v2i32_v2i32_v2i32:]] = OpTypeFunction %[[#vec2_int_32]] %[[#vec2_int_32]] %[[#vec2_int_32]]
; CHECK-DAG: %[[#const_i32_0:]] = OpConstant %[[#int_32]] 0
; CHECK-DAG: %[[#undef_v2i32:]] = OpUndef %[[#vec2_int_32]]
; CHECK-DAG: %[[#vec4_int_32:]] = OpTypeVector %[[#int_32]] 4
; CHECK-DAG: %[[#vec2_bool:]] = OpTypeVector %[[#bool]] 2
; CHECK-DAG: %[[#const_v2i32_0_0:]] = OpConstantComposite %[[#vec2_int_32]] %[[#const_i32_0]] %[[#const_i32_0]]
; CHECK-DAG: %[[#const_v2i32_1_1:]] = OpConstantComposite %[[#vec2_int_32]] %[[#const_i32_1]] %[[#const_i32_1]]
; CHECK-DAG: %[[#struct_v2i32_v2i32:]] = OpTypeStruct %[[#vec2_int_32]] %[[#vec2_int_32]]
; CHECK-DAG: %[[#func_v4i32_v4i32_v4i32:]] = OpTypeFunction %[[#vec4_int_32]] %[[#vec4_int_32]] %[[#vec4_int_32]]
; CHECK-DAG: %[[#undef_v4i32:]] = OpUndef %[[#vec4_int_32]]
define spir_func <2 x i32> @test_AddUint64_uint2(<2 x i32> %a, <2 x i32> %b) {
entry:
; CHECK: %[[#a:]] = OpFunctionParameter %[[#vec2_int_32]]
; CHECK: %[[#b:]] = OpFunctionParameter %[[#vec2_int_32]]
; CHECK: %[[#a_low:]] = OpCompositeExtract %[[#int_32]] %[[#a]] 0
; CHECK: %[[#a_high:]] = OpCompositeExtract %[[#int_32]] %[[#a]] 1
; CHECK: %[[#b_low:]] = OpCompositeExtract %[[#int_32]] %[[#b]] 0
; CHECK: %[[#b_high:]] = OpCompositeExtract %[[#int_32]] %[[#b]] 1
; CHECK: %[[#iaddcarry:]] = OpIAddCarry %[[#struct_i32_i32]] %[[#a_low]] %[[#b_low]]
; CHECK: %[[#lowsum:]] = OpCompositeExtract %[[#int_32]] %[[#iaddcarry]] 0
; CHECK: %[[#carry:]] = OpCompositeExtract %[[#int_32]] %[[#iaddcarry]] 1
; CHECK: %[[#carry_ne0:]] = OpINotEqual %[[#bool]] %[[#carry]] %[[#const_i32_0]]
; CHECK: %[[#select_1_or_0:]] = OpSelect %[[#int_32]] %[[#carry_ne0]] %[[#const_i32_1]] %[[#const_i32_0]]
; CHECK: %[[#highsum:]] = OpIAdd %[[#int_32]] %[[#a_high]] %[[#b_high]]
; CHECK: %[[#highsumpluscarry:]] = OpIAdd %[[#int_32]] %[[#highsum]] %[[#select_1_or_0]]
; CHECK: %[[#adduint64_upto0:]] = OpCompositeInsert %[[#vec2_int_32]] %[[#lowsum]] %[[#undef_v2i32]] 0
; CHECK: %[[#adduint64:]] = OpCompositeInsert %[[#vec2_int_32]] %[[#highsumpluscarry]] %[[#adduint64_upto0]] 1
; CHECK: OpReturnValue %[[#adduint64]]
;
%LowA = extractelement <2 x i32> %a, i64 0
%HighA = extractelement <2 x i32> %a, i64 1
%LowB = extractelement <2 x i32> %b, i64 0
%HighB = extractelement <2 x i32> %b, i64 1
%3 = call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 %LowA, i32 %LowB)
%4 = extractvalue { i32, i1 } %3, 1
%5 = extractvalue { i32, i1 } %3, 0
%CarryZExt = zext i1 %4 to i32
%HighSum = add i32 %HighA, %HighB
%HighSumPlusCarry = add i32 %HighSum, %CarryZExt
%hlsl.AddUint64.upto0 = insertelement <2 x i32> poison, i32 %5, i64 0
%hlsl.AddUint64 = insertelement <2 x i32> %hlsl.AddUint64.upto0, i32 %HighSumPlusCarry, i64 1
ret <2 x i32> %hlsl.AddUint64
}
define spir_func <4 x i32> @test_AddUint64_uint4(<4 x i32> %a, <4 x i32> %b) #0 {
entry:
; CHECK: %[[#a:]] = OpFunctionParameter %[[#vec4_int_32]]
; CHECK: %[[#b:]] = OpFunctionParameter %[[#vec4_int_32]]
; CHECK: %[[#a_low:]] = OpVectorShuffle %[[#vec2_int_32]] %[[#a]] %[[#undef_v4i32]] 0 2
; CHECK: %[[#a_high:]] = OpVectorShuffle %[[#vec2_int_32]] %[[#a]] %[[#undef_v4i32]] 1 3
; CHECK: %[[#b_low:]] = OpVectorShuffle %[[#vec2_int_32]] %[[#b]] %[[#undef_v4i32]] 0 2
; CHECK: %[[#b_high:]] = OpVectorShuffle %[[#vec2_int_32]] %[[#b]] %[[#undef_v4i32]] 1 3
; CHECK: %[[#iaddcarry:]] = OpIAddCarry %[[#struct_v2i32_v2i32]] %[[#a_low]] %[[#vec2_int_32]]
; CHECK: %[[#lowsum:]] = OpCompositeExtract %[[#vec2_int_32]] %[[#iaddcarry]] 0
; CHECK: %[[#carry:]] = OpCompositeExtract %[[#vec2_int_32]] %[[#iaddcarry]] 1
; CHECK: %[[#carry_ne0:]] = OpINotEqual %[[#vec2_bool]] %[[#carry]] %[[#const_v2i32_0_0]]
; CHECK: %[[#select_1_or_0:]] = OpSelect %[[#vec2_int_32]] %[[#carry_ne0]] %[[#const_v2i32_1_1]] %[[#const_v2i32_0_0]]
; CHECK: %[[#highsum:]] = OpIAdd %[[#vec2_int_32]] %[[#a_high]] %[[#b_high]]
; CHECK: %[[#highsumpluscarry:]] = OpIAdd %[[#vec2_int_32]] %[[#highsum]] %[[#select_1_or_0]]
; CHECK: %[[#adduint64:]] = OpVectorShuffle %[[#vec4_int_32]] %[[#lowsum]] %[[#highsumpluscarry]] 0 2 1 3
; CHECK: OpReturnValue %[[#adduint64]]
;
%LowA = shufflevector <4 x i32> %a, <4 x i32> poison, <2 x i32> <i32 0, i32 2>
%HighA = shufflevector <4 x i32> %a, <4 x i32> poison, <2 x i32> <i32 1, i32 3>
%LowB = shufflevector <4 x i32> %b, <4 x i32> poison, <2 x i32> <i32 0, i32 2>
%HighB = shufflevector <4 x i32> %b, <4 x i32> poison, <2 x i32> <i32 1, i32 3>
%3 = call { <2 x i32>, <2 x i1> } @llvm.uadd.with.overflow.v2i32(<2 x i32> %LowA, <2 x i32> %LowB)
%4 = extractvalue { <2 x i32>, <2 x i1> } %3, 1
%5 = extractvalue { <2 x i32>, <2 x i1> } %3, 0
%CarryZExt = zext <2 x i1> %4 to <2 x i32>
%HighSum = add <2 x i32> %HighA, %HighB
%HighSumPlusCarry = add <2 x i32> %HighSum, %CarryZExt
%hlsl.AddUint64 = shufflevector <2 x i32> %5, <2 x i32> %HighSumPlusCarry, <4 x i32> <i32 0, i32 2, i32 1, i32 3>
ret <4 x i32> %hlsl.AddUint64
}