Revert "[flang][OpenMP] Move lowering of ATOMIC to separate file, NFC (#144960)"

PR#144960 broke check-flang tests on Windows (x64/ARM64).

This reverts commit e5559ca45f211f2cdd9c81e46935afe1cc2e22ab.
This commit is contained in:
Muhammad Omair Javaid 2025-06-26 18:32:20 +05:00
parent 597ffb1187
commit cfdc4c4a5b
4 changed files with 468 additions and 549 deletions

View File

@ -23,7 +23,6 @@ add_flang_library(FortranLower
LoweringOptions.cpp
Mangler.cpp
OpenACC.cpp
OpenMP/Atomic.cpp
OpenMP/ClauseProcessor.cpp
OpenMP/Clauses.cpp
OpenMP/DataSharingProcessor.cpp

View File

@ -1,510 +0,0 @@
//===-- Atomic.cpp -- Lowering of atomic constructs -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Atomic.h"
#include "Clauses.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/type.h"
#include "flang/Support/Fortran.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#include <string>
#include <type_traits>
#include <variant>
#include <vector>
static llvm::cl::opt<bool> DumpAtomicAnalysis("fdebug-dump-atomic-analysis");
using namespace Fortran;
// Don't import the entire Fortran::lower.
namespace omp {
using namespace Fortran::lower::omp;
}
[[maybe_unused]] static void
dumpAtomicAnalysis(const parser::OpenMPAtomicConstruct::Analysis &analysis) {
auto whatStr = [](int k) {
std::string txt = "?";
switch (k & parser::OpenMPAtomicConstruct::Analysis::Action) {
case parser::OpenMPAtomicConstruct::Analysis::None:
txt = "None";
break;
case parser::OpenMPAtomicConstruct::Analysis::Read:
txt = "Read";
break;
case parser::OpenMPAtomicConstruct::Analysis::Write:
txt = "Write";
break;
case parser::OpenMPAtomicConstruct::Analysis::Update:
txt = "Update";
break;
}
switch (k & parser::OpenMPAtomicConstruct::Analysis::Condition) {
case parser::OpenMPAtomicConstruct::Analysis::IfTrue:
txt += " | IfTrue";
break;
case parser::OpenMPAtomicConstruct::Analysis::IfFalse:
txt += " | IfFalse";
break;
}
return txt;
};
auto exprStr = [&](const parser::TypedExpr &expr) {
if (auto *maybe = expr.get()) {
if (maybe->v)
return maybe->v->AsFortran();
}
return "<null>"s;
};
auto assignStr = [&](const parser::AssignmentStmt::TypedAssignment &assign) {
if (auto *maybe = assign.get(); maybe && maybe->v) {
std::string str;
llvm::raw_string_ostream os(str);
maybe->v->AsFortran(os);
return str;
}
return "<null>"s;
};
const semantics::SomeExpr &atom = *analysis.atom.get()->v;
llvm::errs() << "Analysis {\n";
llvm::errs() << " atom: " << atom.AsFortran() << "\n";
llvm::errs() << " cond: " << exprStr(analysis.cond) << "\n";
llvm::errs() << " op0 {\n";
llvm::errs() << " what: " << whatStr(analysis.op0.what) << "\n";
llvm::errs() << " assign: " << assignStr(analysis.op0.assign) << "\n";
llvm::errs() << " }\n";
llvm::errs() << " op1 {\n";
llvm::errs() << " what: " << whatStr(analysis.op1.what) << "\n";
llvm::errs() << " assign: " << assignStr(analysis.op1.assign) << "\n";
llvm::errs() << " }\n";
llvm::errs() << "}\n";
}
static bool isPointerAssignment(const evaluate::Assignment &assign) {
return common::visit(
common::visitors{
[](const evaluate::Assignment::BoundsSpec &) { return true; },
[](const evaluate::Assignment::BoundsRemapping &) { return true; },
[](const auto &) { return false; },
},
assign.u);
}
static fir::FirOpBuilder::InsertPoint
getInsertionPointBefore(mlir::Operation *op) {
return fir::FirOpBuilder::InsertPoint(op->getBlock(),
mlir::Block::iterator(op));
}
static fir::FirOpBuilder::InsertPoint
getInsertionPointAfter(mlir::Operation *op) {
return fir::FirOpBuilder::InsertPoint(op->getBlock(),
++mlir::Block::iterator(op));
}
static mlir::IntegerAttr getAtomicHint(lower::AbstractConverter &converter,
const omp::List<omp::Clause> &clauses) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const omp::Clause &clause : clauses) {
if (clause.id != llvm::omp::Clause::OMPC_hint)
continue;
auto &hint = std::get<omp::clause::Hint>(clause.u);
auto maybeVal = evaluate::ToInt64(hint.v);
CHECK(maybeVal);
return builder.getI64IntegerAttr(*maybeVal);
}
return nullptr;
}
static mlir::omp::ClauseMemoryOrderKind
getMemoryOrderKind(common::OmpMemoryOrderType kind) {
switch (kind) {
case common::OmpMemoryOrderType::Acq_Rel:
return mlir::omp::ClauseMemoryOrderKind::Acq_rel;
case common::OmpMemoryOrderType::Acquire:
return mlir::omp::ClauseMemoryOrderKind::Acquire;
case common::OmpMemoryOrderType::Relaxed:
return mlir::omp::ClauseMemoryOrderKind::Relaxed;
case common::OmpMemoryOrderType::Release:
return mlir::omp::ClauseMemoryOrderKind::Release;
case common::OmpMemoryOrderType::Seq_Cst:
return mlir::omp::ClauseMemoryOrderKind::Seq_cst;
}
llvm_unreachable("Unexpected kind");
}
static std::optional<mlir::omp::ClauseMemoryOrderKind>
getMemoryOrderKind(llvm::omp::Clause clauseId) {
switch (clauseId) {
case llvm::omp::Clause::OMPC_acq_rel:
return mlir::omp::ClauseMemoryOrderKind::Acq_rel;
case llvm::omp::Clause::OMPC_acquire:
return mlir::omp::ClauseMemoryOrderKind::Acquire;
case llvm::omp::Clause::OMPC_relaxed:
return mlir::omp::ClauseMemoryOrderKind::Relaxed;
case llvm::omp::Clause::OMPC_release:
return mlir::omp::ClauseMemoryOrderKind::Release;
case llvm::omp::Clause::OMPC_seq_cst:
return mlir::omp::ClauseMemoryOrderKind::Seq_cst;
default:
return std::nullopt;
}
}
static std::optional<mlir::omp::ClauseMemoryOrderKind>
getMemoryOrderFromRequires(const semantics::Scope &scope) {
// The REQUIRES construct is only allowed in the main program scope
// and module scope, but seems like we also accept it in a subprogram
// scope.
// For safety, traverse all enclosing scopes and check if their symbol
// contains REQUIRES.
for (const auto *sc{&scope}; sc->kind() != semantics::Scope::Kind::Global;
sc = &sc->parent()) {
const semantics::Symbol *sym = sc->symbol();
if (!sym)
continue;
const common::OmpMemoryOrderType *admo = common::visit(
[](auto &&s) {
using WithOmpDeclarative = semantics::WithOmpDeclarative;
if constexpr (std::is_convertible_v<decltype(s),
const WithOmpDeclarative &>) {
return s.ompAtomicDefaultMemOrder();
}
return static_cast<const common::OmpMemoryOrderType *>(nullptr);
},
sym->details());
if (admo)
return getMemoryOrderKind(*admo);
}
return std::nullopt;
}
static std::optional<mlir::omp::ClauseMemoryOrderKind>
getDefaultAtomicMemOrder(semantics::SemanticsContext &semaCtx) {
unsigned version = semaCtx.langOptions().OpenMPVersion;
if (version > 50)
return mlir::omp::ClauseMemoryOrderKind::Relaxed;
return std::nullopt;
}
static std::optional<mlir::omp::ClauseMemoryOrderKind>
getAtomicMemoryOrder(semantics::SemanticsContext &semaCtx,
const omp::List<omp::Clause> &clauses,
const semantics::Scope &scope) {
for (const omp::Clause &clause : clauses) {
if (auto maybeKind = getMemoryOrderKind(clause.id))
return *maybeKind;
}
if (auto maybeKind = getMemoryOrderFromRequires(scope))
return *maybeKind;
return getDefaultAtomicMemOrder(semaCtx);
}
static mlir::omp::ClauseMemoryOrderKindAttr
makeMemOrderAttr(lower::AbstractConverter &converter,
std::optional<mlir::omp::ClauseMemoryOrderKind> maybeKind) {
if (maybeKind) {
return mlir::omp::ClauseMemoryOrderKindAttr::get(
converter.getFirOpBuilder().getContext(), *maybeKind);
}
return nullptr;
}
static mlir::Operation * //
genAtomicRead(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
lower::StatementContext &stmtCtx, mlir::Value atomAddr,
const semantics::SomeExpr &atom,
const evaluate::Assignment &assign, mlir::IntegerAttr hint,
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder,
fir::FirOpBuilder::InsertPoint preAt,
fir::FirOpBuilder::InsertPoint atomicAt,
fir::FirOpBuilder::InsertPoint postAt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
builder.restoreInsertionPoint(preAt);
// If the atomic clause is read then the memory-order clause must
// not be release.
if (memOrder) {
if (*memOrder == mlir::omp::ClauseMemoryOrderKind::Release) {
// Reset it back to the default.
memOrder = getDefaultAtomicMemOrder(semaCtx);
} else if (*memOrder == mlir::omp::ClauseMemoryOrderKind::Acq_rel) {
// The MLIR verifier doesn't like acq_rel either.
memOrder = mlir::omp::ClauseMemoryOrderKind::Acquire;
}
}
mlir::Value storeAddr =
fir::getBase(converter.genExprAddr(assign.lhs, stmtCtx, &loc));
mlir::Type atomType = fir::unwrapRefType(atomAddr.getType());
mlir::Type storeType = fir::unwrapRefType(storeAddr.getType());
mlir::Value toAddr = [&]() {
if (atomType == storeType)
return storeAddr;
return builder.createTemporary(loc, atomType, ".tmp.atomval");
}();
builder.restoreInsertionPoint(atomicAt);
mlir::Operation *op = builder.create<mlir::omp::AtomicReadOp>(
loc, atomAddr, toAddr, mlir::TypeAttr::get(atomType), hint,
makeMemOrderAttr(converter, memOrder));
if (atomType != storeType) {
lower::ExprToValueMap overrides;
// The READ operation could be a part of UPDATE CAPTURE, so make sure
// we don't emit extra code into the body of the atomic op.
builder.restoreInsertionPoint(postAt);
mlir::Value load = builder.create<fir::LoadOp>(loc, toAddr);
overrides.try_emplace(&atom, load);
converter.overrideExprValues(&overrides);
mlir::Value value =
fir::getBase(converter.genExprValue(assign.rhs, stmtCtx, &loc));
converter.resetExprOverrides();
builder.create<fir::StoreOp>(loc, value, storeAddr);
}
return op;
}
static mlir::Operation * //
genAtomicWrite(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
lower::StatementContext &stmtCtx, mlir::Value atomAddr,
const semantics::SomeExpr &atom,
const evaluate::Assignment &assign, mlir::IntegerAttr hint,
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder,
fir::FirOpBuilder::InsertPoint preAt,
fir::FirOpBuilder::InsertPoint atomicAt,
fir::FirOpBuilder::InsertPoint postAt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
builder.restoreInsertionPoint(preAt);
// If the atomic clause is write then the memory-order clause must
// not be acquire.
if (memOrder) {
if (*memOrder == mlir::omp::ClauseMemoryOrderKind::Acquire) {
// Reset it back to the default.
memOrder = getDefaultAtomicMemOrder(semaCtx);
} else if (*memOrder == mlir::omp::ClauseMemoryOrderKind::Acq_rel) {
// The MLIR verifier doesn't like acq_rel either.
memOrder = mlir::omp::ClauseMemoryOrderKind::Release;
}
}
mlir::Value value =
fir::getBase(converter.genExprValue(assign.rhs, stmtCtx, &loc));
mlir::Type atomType = fir::unwrapRefType(atomAddr.getType());
mlir::Value converted = builder.createConvert(loc, atomType, value);
builder.restoreInsertionPoint(atomicAt);
mlir::Operation *op = builder.create<mlir::omp::AtomicWriteOp>(
loc, atomAddr, converted, hint, makeMemOrderAttr(converter, memOrder));
return op;
}
static mlir::Operation *
genAtomicUpdate(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
lower::StatementContext &stmtCtx, mlir::Value atomAddr,
const semantics::SomeExpr &atom,
const evaluate::Assignment &assign, mlir::IntegerAttr hint,
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder,
fir::FirOpBuilder::InsertPoint preAt,
fir::FirOpBuilder::InsertPoint atomicAt,
fir::FirOpBuilder::InsertPoint postAt) {
lower::ExprToValueMap overrides;
lower::StatementContext naCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
builder.restoreInsertionPoint(preAt);
mlir::Type atomType = fir::unwrapRefType(atomAddr.getType());
// This must exist by now.
semantics::SomeExpr input = *evaluate::GetConvertInput(assign.rhs);
std::vector<semantics::SomeExpr> args =
evaluate::GetTopLevelOperation(input).second;
assert(!args.empty() && "Update operation without arguments");
for (auto &arg : args) {
if (!evaluate::IsSameOrConvertOf(arg, atom)) {
mlir::Value val = fir::getBase(converter.genExprValue(arg, naCtx, &loc));
overrides.try_emplace(&arg, val);
}
}
builder.restoreInsertionPoint(atomicAt);
auto updateOp = builder.create<mlir::omp::AtomicUpdateOp>(
loc, atomAddr, hint, makeMemOrderAttr(converter, memOrder));
mlir::Region &region = updateOp->getRegion(0);
mlir::Block *block = builder.createBlock(&region, {}, {atomType}, {loc});
mlir::Value localAtom = fir::getBase(block->getArgument(0));
overrides.try_emplace(&atom, localAtom);
converter.overrideExprValues(&overrides);
mlir::Value updated =
fir::getBase(converter.genExprValue(assign.rhs, stmtCtx, &loc));
mlir::Value converted = builder.createConvert(loc, atomType, updated);
builder.create<mlir::omp::YieldOp>(loc, converted);
converter.resetExprOverrides();
builder.restoreInsertionPoint(postAt); // For naCtx cleanups
return updateOp;
}
static mlir::Operation *
genAtomicOperation(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
lower::StatementContext &stmtCtx, int action,
mlir::Value atomAddr, const semantics::SomeExpr &atom,
const evaluate::Assignment &assign, mlir::IntegerAttr hint,
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder,
fir::FirOpBuilder::InsertPoint preAt,
fir::FirOpBuilder::InsertPoint atomicAt,
fir::FirOpBuilder::InsertPoint postAt) {
if (isPointerAssignment(assign)) {
TODO(loc, "Code generation for pointer assignment is not implemented yet");
}
// This function and the functions called here do not preserve the
// builder's insertion point, or set it to anything specific.
switch (action) {
case parser::OpenMPAtomicConstruct::Analysis::Read:
return genAtomicRead(converter, semaCtx, loc, stmtCtx, atomAddr, atom,
assign, hint, memOrder, preAt, atomicAt, postAt);
case parser::OpenMPAtomicConstruct::Analysis::Write:
return genAtomicWrite(converter, semaCtx, loc, stmtCtx, atomAddr, atom,
assign, hint, memOrder, preAt, atomicAt, postAt);
case parser::OpenMPAtomicConstruct::Analysis::Update:
return genAtomicUpdate(converter, semaCtx, loc, stmtCtx, atomAddr, atom,
assign, hint, memOrder, preAt, atomicAt, postAt);
default:
return nullptr;
}
}
void Fortran::lower::omp::lowerAtomic(
AbstractConverter &converter, SymMap &symTable,
semantics::SemanticsContext &semaCtx, pft::Evaluation &eval,
const parser::OpenMPAtomicConstruct &construct) {
auto get = [](auto &&typedWrapper) -> decltype(&*typedWrapper.get()->v) {
if (auto *maybe = typedWrapper.get(); maybe && maybe->v) {
return &*maybe->v;
} else {
return nullptr;
}
};
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto &dirSpec = std::get<parser::OmpDirectiveSpecification>(construct.t);
omp::List<omp::Clause> clauses = makeClauses(dirSpec.Clauses(), semaCtx);
lower::StatementContext stmtCtx;
const parser::OpenMPAtomicConstruct::Analysis &analysis = construct.analysis;
if (DumpAtomicAnalysis)
dumpAtomicAnalysis(analysis);
const semantics::SomeExpr &atom = *get(analysis.atom);
mlir::Location loc = converter.genLocation(construct.source);
mlir::Value atomAddr =
fir::getBase(converter.genExprAddr(atom, stmtCtx, &loc));
mlir::IntegerAttr hint = getAtomicHint(converter, clauses);
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder =
getAtomicMemoryOrder(semaCtx, clauses,
semaCtx.FindScope(construct.source));
if (auto *cond = get(analysis.cond)) {
(void)cond;
TODO(loc, "OpenMP ATOMIC COMPARE");
} else {
int action0 = analysis.op0.what & analysis.Action;
int action1 = analysis.op1.what & analysis.Action;
mlir::Operation *captureOp = nullptr;
fir::FirOpBuilder::InsertPoint preAt = builder.saveInsertionPoint();
fir::FirOpBuilder::InsertPoint atomicAt, postAt;
if (construct.IsCapture()) {
// Capturing operation.
assert(action0 != analysis.None && action1 != analysis.None &&
"Expexcing two actions");
(void)action0;
(void)action1;
captureOp = builder.create<mlir::omp::AtomicCaptureOp>(
loc, hint, makeMemOrderAttr(converter, memOrder));
// Set the non-atomic insertion point to before the atomic.capture.
preAt = getInsertionPointBefore(captureOp);
mlir::Block *block = builder.createBlock(&captureOp->getRegion(0));
builder.setInsertionPointToEnd(block);
// Set the atomic insertion point to before the terminator inside
// atomic.capture.
mlir::Operation *term = builder.create<mlir::omp::TerminatorOp>(loc);
atomicAt = getInsertionPointBefore(term);
postAt = getInsertionPointAfter(captureOp);
hint = nullptr;
memOrder = std::nullopt;
} else {
// Non-capturing operation.
assert(action0 != analysis.None && action1 == analysis.None &&
"Expexcing single action");
assert(!(analysis.op0.what & analysis.Condition));
postAt = atomicAt = preAt;
}
// The builder's insertion point needs to be specifically set before
// each call to `genAtomicOperation`.
mlir::Operation *firstOp = genAtomicOperation(
converter, semaCtx, loc, stmtCtx, analysis.op0.what, atomAddr, atom,
*get(analysis.op0.assign), hint, memOrder, preAt, atomicAt, postAt);
assert(firstOp && "Should have created an atomic operation");
atomicAt = getInsertionPointAfter(firstOp);
mlir::Operation *secondOp = nullptr;
if (analysis.op1.what != analysis.None) {
secondOp = genAtomicOperation(
converter, semaCtx, loc, stmtCtx, analysis.op1.what, atomAddr, atom,
*get(analysis.op1.assign), hint, memOrder, preAt, atomicAt, postAt);
}
if (construct.IsCapture()) {
// If this is a capture operation, the first/second ops will be inside
// of it. Set the insertion point to past the capture op itself.
builder.restoreInsertionPoint(postAt);
} else {
if (secondOp) {
builder.setInsertionPointAfter(secondOp);
} else {
builder.setInsertionPointAfter(firstOp);
}
}
}
}

View File

@ -1,36 +0,0 @@
//===-- Atomic.h -- Lowering of atomic constructs -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_LOWER_OPENMP_ATOMIC_H
#define FORTRAN_LOWER_OPENMP_ATOMIC_H
namespace Fortran {
namespace lower {
class AbstractConverter;
class SymMap;
} // namespace lower
namespace parser {
struct OpenMPAtomicConstruct;
}
namespace pft {
struct Evaluation;
}
namespace semantics {
class SemanticsContext;
}
} // namespace Fortran
namespace Fortran::lower::omp {
void lowerAtomic(AbstractConverter &converter, SymMap &symTable,
semantics::SemanticsContext &semaCtx, pft::Evaluation &eval,
const parser::OpenMPAtomicConstruct &construct);
}
#endif // FORTRAN_LOWER_OPENMP_ATOMIC_H

View File

@ -12,7 +12,6 @@
#include "flang/Lower/OpenMP.h"
#include "Atomic.h"
#include "ClauseProcessor.h"
#include "Clauses.h"
#include "DataSharingProcessor.h"
@ -43,10 +42,13 @@
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Support/CommandLine.h"
using namespace Fortran::lower::omp;
using namespace Fortran::common::openmp;
static llvm::cl::opt<bool> DumpAtomicAnalysis("fdebug-dump-atomic-analysis");
//===----------------------------------------------------------------------===//
// Code generation helper functions
//===----------------------------------------------------------------------===//
@ -1157,6 +1159,16 @@ markDeclareTarget(mlir::Operation *op, lower::AbstractConverter &converter,
declareTargetOp.setDeclareTarget(deviceType, captureClause);
}
static bool isPointerAssignment(const evaluate::Assignment &assign) {
return common::visit(
common::visitors{
[](const evaluate::Assignment::BoundsSpec &) { return true; },
[](const evaluate::Assignment::BoundsRemapping &) { return true; },
[](const auto &) { return false; },
},
assign.u);
}
//===----------------------------------------------------------------------===//
// Op body generation helper structures and functions
//===----------------------------------------------------------------------===//
@ -2716,6 +2728,308 @@ genTeamsOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
queue, item, clauseOps);
}
//===----------------------------------------------------------------------===//
// Code generation for atomic operations
//===----------------------------------------------------------------------===//
static fir::FirOpBuilder::InsertPoint
getInsertionPointBefore(mlir::Operation *op) {
return fir::FirOpBuilder::InsertPoint(op->getBlock(),
mlir::Block::iterator(op));
}
static fir::FirOpBuilder::InsertPoint
getInsertionPointAfter(mlir::Operation *op) {
return fir::FirOpBuilder::InsertPoint(op->getBlock(),
++mlir::Block::iterator(op));
}
static mlir::IntegerAttr getAtomicHint(lower::AbstractConverter &converter,
const List<Clause> &clauses) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const Clause &clause : clauses) {
if (clause.id != llvm::omp::Clause::OMPC_hint)
continue;
auto &hint = std::get<clause::Hint>(clause.u);
auto maybeVal = evaluate::ToInt64(hint.v);
CHECK(maybeVal);
return builder.getI64IntegerAttr(*maybeVal);
}
return nullptr;
}
static mlir::omp::ClauseMemoryOrderKind
getMemoryOrderKind(common::OmpMemoryOrderType kind) {
switch (kind) {
case common::OmpMemoryOrderType::Acq_Rel:
return mlir::omp::ClauseMemoryOrderKind::Acq_rel;
case common::OmpMemoryOrderType::Acquire:
return mlir::omp::ClauseMemoryOrderKind::Acquire;
case common::OmpMemoryOrderType::Relaxed:
return mlir::omp::ClauseMemoryOrderKind::Relaxed;
case common::OmpMemoryOrderType::Release:
return mlir::omp::ClauseMemoryOrderKind::Release;
case common::OmpMemoryOrderType::Seq_Cst:
return mlir::omp::ClauseMemoryOrderKind::Seq_cst;
}
llvm_unreachable("Unexpected kind");
}
static std::optional<mlir::omp::ClauseMemoryOrderKind>
getMemoryOrderKind(llvm::omp::Clause clauseId) {
switch (clauseId) {
case llvm::omp::Clause::OMPC_acq_rel:
return mlir::omp::ClauseMemoryOrderKind::Acq_rel;
case llvm::omp::Clause::OMPC_acquire:
return mlir::omp::ClauseMemoryOrderKind::Acquire;
case llvm::omp::Clause::OMPC_relaxed:
return mlir::omp::ClauseMemoryOrderKind::Relaxed;
case llvm::omp::Clause::OMPC_release:
return mlir::omp::ClauseMemoryOrderKind::Release;
case llvm::omp::Clause::OMPC_seq_cst:
return mlir::omp::ClauseMemoryOrderKind::Seq_cst;
default:
return std::nullopt;
}
}
static std::optional<mlir::omp::ClauseMemoryOrderKind>
getMemoryOrderFromRequires(const semantics::Scope &scope) {
// The REQUIRES construct is only allowed in the main program scope
// and module scope, but seems like we also accept it in a subprogram
// scope.
// For safety, traverse all enclosing scopes and check if their symbol
// contains REQUIRES.
for (const auto *sc{&scope}; sc->kind() != semantics::Scope::Kind::Global;
sc = &sc->parent()) {
const semantics::Symbol *sym = sc->symbol();
if (!sym)
continue;
const common::OmpMemoryOrderType *admo = common::visit(
[](auto &&s) {
using WithOmpDeclarative = semantics::WithOmpDeclarative;
if constexpr (std::is_convertible_v<decltype(s),
const WithOmpDeclarative &>) {
return s.ompAtomicDefaultMemOrder();
}
return static_cast<const common::OmpMemoryOrderType *>(nullptr);
},
sym->details());
if (admo)
return getMemoryOrderKind(*admo);
}
return std::nullopt;
}
static std::optional<mlir::omp::ClauseMemoryOrderKind>
getDefaultAtomicMemOrder(semantics::SemanticsContext &semaCtx) {
unsigned version = semaCtx.langOptions().OpenMPVersion;
if (version > 50)
return mlir::omp::ClauseMemoryOrderKind::Relaxed;
return std::nullopt;
}
static std::optional<mlir::omp::ClauseMemoryOrderKind>
getAtomicMemoryOrder(semantics::SemanticsContext &semaCtx,
const List<Clause> &clauses,
const semantics::Scope &scope) {
for (const Clause &clause : clauses) {
if (auto maybeKind = getMemoryOrderKind(clause.id))
return *maybeKind;
}
if (auto maybeKind = getMemoryOrderFromRequires(scope))
return *maybeKind;
return getDefaultAtomicMemOrder(semaCtx);
}
static mlir::omp::ClauseMemoryOrderKindAttr
makeMemOrderAttr(lower::AbstractConverter &converter,
std::optional<mlir::omp::ClauseMemoryOrderKind> maybeKind) {
if (maybeKind) {
return mlir::omp::ClauseMemoryOrderKindAttr::get(
converter.getFirOpBuilder().getContext(), *maybeKind);
}
return nullptr;
}
static mlir::Operation * //
genAtomicRead(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
lower::StatementContext &stmtCtx, mlir::Value atomAddr,
const semantics::SomeExpr &atom,
const evaluate::Assignment &assign, mlir::IntegerAttr hint,
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder,
fir::FirOpBuilder::InsertPoint preAt,
fir::FirOpBuilder::InsertPoint atomicAt,
fir::FirOpBuilder::InsertPoint postAt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
builder.restoreInsertionPoint(preAt);
// If the atomic clause is read then the memory-order clause must
// not be release.
if (memOrder) {
if (*memOrder == mlir::omp::ClauseMemoryOrderKind::Release) {
// Reset it back to the default.
memOrder = getDefaultAtomicMemOrder(semaCtx);
} else if (*memOrder == mlir::omp::ClauseMemoryOrderKind::Acq_rel) {
// The MLIR verifier doesn't like acq_rel either.
memOrder = mlir::omp::ClauseMemoryOrderKind::Acquire;
}
}
mlir::Value storeAddr =
fir::getBase(converter.genExprAddr(assign.lhs, stmtCtx, &loc));
mlir::Type atomType = fir::unwrapRefType(atomAddr.getType());
mlir::Type storeType = fir::unwrapRefType(storeAddr.getType());
mlir::Value toAddr = [&]() {
if (atomType == storeType)
return storeAddr;
return builder.createTemporary(loc, atomType, ".tmp.atomval");
}();
builder.restoreInsertionPoint(atomicAt);
mlir::Operation *op = builder.create<mlir::omp::AtomicReadOp>(
loc, atomAddr, toAddr, mlir::TypeAttr::get(atomType), hint,
makeMemOrderAttr(converter, memOrder));
if (atomType != storeType) {
lower::ExprToValueMap overrides;
// The READ operation could be a part of UPDATE CAPTURE, so make sure
// we don't emit extra code into the body of the atomic op.
builder.restoreInsertionPoint(postAt);
mlir::Value load = builder.create<fir::LoadOp>(loc, toAddr);
overrides.try_emplace(&atom, load);
converter.overrideExprValues(&overrides);
mlir::Value value =
fir::getBase(converter.genExprValue(assign.rhs, stmtCtx, &loc));
converter.resetExprOverrides();
builder.create<fir::StoreOp>(loc, value, storeAddr);
}
return op;
}
static mlir::Operation * //
genAtomicWrite(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
lower::StatementContext &stmtCtx, mlir::Value atomAddr,
const semantics::SomeExpr &atom,
const evaluate::Assignment &assign, mlir::IntegerAttr hint,
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder,
fir::FirOpBuilder::InsertPoint preAt,
fir::FirOpBuilder::InsertPoint atomicAt,
fir::FirOpBuilder::InsertPoint postAt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
builder.restoreInsertionPoint(preAt);
// If the atomic clause is write then the memory-order clause must
// not be acquire.
if (memOrder) {
if (*memOrder == mlir::omp::ClauseMemoryOrderKind::Acquire) {
// Reset it back to the default.
memOrder = getDefaultAtomicMemOrder(semaCtx);
} else if (*memOrder == mlir::omp::ClauseMemoryOrderKind::Acq_rel) {
// The MLIR verifier doesn't like acq_rel either.
memOrder = mlir::omp::ClauseMemoryOrderKind::Release;
}
}
mlir::Value value =
fir::getBase(converter.genExprValue(assign.rhs, stmtCtx, &loc));
mlir::Type atomType = fir::unwrapRefType(atomAddr.getType());
mlir::Value converted = builder.createConvert(loc, atomType, value);
builder.restoreInsertionPoint(atomicAt);
mlir::Operation *op = builder.create<mlir::omp::AtomicWriteOp>(
loc, atomAddr, converted, hint, makeMemOrderAttr(converter, memOrder));
return op;
}
static mlir::Operation *
genAtomicUpdate(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
lower::StatementContext &stmtCtx, mlir::Value atomAddr,
const semantics::SomeExpr &atom,
const evaluate::Assignment &assign, mlir::IntegerAttr hint,
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder,
fir::FirOpBuilder::InsertPoint preAt,
fir::FirOpBuilder::InsertPoint atomicAt,
fir::FirOpBuilder::InsertPoint postAt) {
lower::ExprToValueMap overrides;
lower::StatementContext naCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
builder.restoreInsertionPoint(preAt);
mlir::Type atomType = fir::unwrapRefType(atomAddr.getType());
// This must exist by now.
SomeExpr input = *Fortran::evaluate::GetConvertInput(assign.rhs);
std::vector<SomeExpr> args{
Fortran::evaluate::GetTopLevelOperation(input).second};
assert(!args.empty() && "Update operation without arguments");
for (auto &arg : args) {
if (!Fortran::evaluate::IsSameOrConvertOf(arg, atom)) {
mlir::Value val = fir::getBase(converter.genExprValue(arg, naCtx, &loc));
overrides.try_emplace(&arg, val);
}
}
builder.restoreInsertionPoint(atomicAt);
auto updateOp = builder.create<mlir::omp::AtomicUpdateOp>(
loc, atomAddr, hint, makeMemOrderAttr(converter, memOrder));
mlir::Region &region = updateOp->getRegion(0);
mlir::Block *block = builder.createBlock(&region, {}, {atomType}, {loc});
mlir::Value localAtom = fir::getBase(block->getArgument(0));
overrides.try_emplace(&atom, localAtom);
converter.overrideExprValues(&overrides);
mlir::Value updated =
fir::getBase(converter.genExprValue(assign.rhs, stmtCtx, &loc));
mlir::Value converted = builder.createConvert(loc, atomType, updated);
builder.create<mlir::omp::YieldOp>(loc, converted);
converter.resetExprOverrides();
builder.restoreInsertionPoint(postAt); // For naCtx cleanups
return updateOp;
}
static mlir::Operation *
genAtomicOperation(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
lower::StatementContext &stmtCtx, int action,
mlir::Value atomAddr, const semantics::SomeExpr &atom,
const evaluate::Assignment &assign, mlir::IntegerAttr hint,
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder,
fir::FirOpBuilder::InsertPoint preAt,
fir::FirOpBuilder::InsertPoint atomicAt,
fir::FirOpBuilder::InsertPoint postAt) {
if (isPointerAssignment(assign)) {
TODO(loc, "Code generation for pointer assignment is not implemented yet");
}
// This function and the functions called here do not preserve the
// builder's insertion point, or set it to anything specific.
switch (action) {
case parser::OpenMPAtomicConstruct::Analysis::Read:
return genAtomicRead(converter, semaCtx, loc, stmtCtx, atomAddr, atom,
assign, hint, memOrder, preAt, atomicAt, postAt);
case parser::OpenMPAtomicConstruct::Analysis::Write:
return genAtomicWrite(converter, semaCtx, loc, stmtCtx, atomAddr, atom,
assign, hint, memOrder, preAt, atomicAt, postAt);
case parser::OpenMPAtomicConstruct::Analysis::Update:
return genAtomicUpdate(converter, semaCtx, loc, stmtCtx, atomAddr, atom,
assign, hint, memOrder, preAt, atomicAt, postAt);
default:
return nullptr;
}
}
//===----------------------------------------------------------------------===//
// Code generation functions for the standalone version of constructs that can
// also be a leaf of a composite construct
@ -3620,11 +3934,163 @@ static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
// OpenMPConstruct visitors
//===----------------------------------------------------------------------===//
[[maybe_unused]] static void
dumpAtomicAnalysis(const parser::OpenMPAtomicConstruct::Analysis &analysis) {
auto whatStr = [](int k) {
std::string txt = "?";
switch (k & parser::OpenMPAtomicConstruct::Analysis::Action) {
case parser::OpenMPAtomicConstruct::Analysis::None:
txt = "None";
break;
case parser::OpenMPAtomicConstruct::Analysis::Read:
txt = "Read";
break;
case parser::OpenMPAtomicConstruct::Analysis::Write:
txt = "Write";
break;
case parser::OpenMPAtomicConstruct::Analysis::Update:
txt = "Update";
break;
}
switch (k & parser::OpenMPAtomicConstruct::Analysis::Condition) {
case parser::OpenMPAtomicConstruct::Analysis::IfTrue:
txt += " | IfTrue";
break;
case parser::OpenMPAtomicConstruct::Analysis::IfFalse:
txt += " | IfFalse";
break;
}
return txt;
};
auto exprStr = [&](const parser::TypedExpr &expr) {
if (auto *maybe = expr.get()) {
if (maybe->v)
return maybe->v->AsFortran();
}
return "<null>"s;
};
auto assignStr = [&](const parser::AssignmentStmt::TypedAssignment &assign) {
if (auto *maybe = assign.get(); maybe && maybe->v) {
std::string str;
llvm::raw_string_ostream os(str);
maybe->v->AsFortran(os);
return str;
}
return "<null>"s;
};
const SomeExpr &atom = *analysis.atom.get()->v;
llvm::errs() << "Analysis {\n";
llvm::errs() << " atom: " << atom.AsFortran() << "\n";
llvm::errs() << " cond: " << exprStr(analysis.cond) << "\n";
llvm::errs() << " op0 {\n";
llvm::errs() << " what: " << whatStr(analysis.op0.what) << "\n";
llvm::errs() << " assign: " << assignStr(analysis.op0.assign) << "\n";
llvm::errs() << " }\n";
llvm::errs() << " op1 {\n";
llvm::errs() << " what: " << whatStr(analysis.op1.what) << "\n";
llvm::errs() << " assign: " << assignStr(analysis.op1.assign) << "\n";
llvm::errs() << " }\n";
llvm::errs() << "}\n";
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPAtomicConstruct &construct) {
lowerAtomic(converter, symTable, semaCtx, eval, construct);
auto get = [](auto &&typedWrapper) -> decltype(&*typedWrapper.get()->v) {
if (auto *maybe = typedWrapper.get(); maybe && maybe->v) {
return &*maybe->v;
} else {
return nullptr;
}
};
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto &dirSpec = std::get<parser::OmpDirectiveSpecification>(construct.t);
List<Clause> clauses = makeClauses(dirSpec.Clauses(), semaCtx);
lower::StatementContext stmtCtx;
const parser::OpenMPAtomicConstruct::Analysis &analysis = construct.analysis;
if (DumpAtomicAnalysis)
dumpAtomicAnalysis(analysis);
const semantics::SomeExpr &atom = *get(analysis.atom);
mlir::Location loc = converter.genLocation(construct.source);
mlir::Value atomAddr =
fir::getBase(converter.genExprAddr(atom, stmtCtx, &loc));
mlir::IntegerAttr hint = getAtomicHint(converter, clauses);
std::optional<mlir::omp::ClauseMemoryOrderKind> memOrder =
getAtomicMemoryOrder(semaCtx, clauses,
semaCtx.FindScope(construct.source));
if (auto *cond = get(analysis.cond)) {
(void)cond;
TODO(loc, "OpenMP ATOMIC COMPARE");
} else {
int action0 = analysis.op0.what & analysis.Action;
int action1 = analysis.op1.what & analysis.Action;
mlir::Operation *captureOp = nullptr;
fir::FirOpBuilder::InsertPoint preAt = builder.saveInsertionPoint();
fir::FirOpBuilder::InsertPoint atomicAt, postAt;
if (construct.IsCapture()) {
// Capturing operation.
assert(action0 != analysis.None && action1 != analysis.None &&
"Expexcing two actions");
(void)action0;
(void)action1;
captureOp = builder.create<mlir::omp::AtomicCaptureOp>(
loc, hint, makeMemOrderAttr(converter, memOrder));
// Set the non-atomic insertion point to before the atomic.capture.
preAt = getInsertionPointBefore(captureOp);
mlir::Block *block = builder.createBlock(&captureOp->getRegion(0));
builder.setInsertionPointToEnd(block);
// Set the atomic insertion point to before the terminator inside
// atomic.capture.
mlir::Operation *term = builder.create<mlir::omp::TerminatorOp>(loc);
atomicAt = getInsertionPointBefore(term);
postAt = getInsertionPointAfter(captureOp);
hint = nullptr;
memOrder = std::nullopt;
} else {
// Non-capturing operation.
assert(action0 != analysis.None && action1 == analysis.None &&
"Expexcing single action");
assert(!(analysis.op0.what & analysis.Condition));
postAt = atomicAt = preAt;
}
// The builder's insertion point needs to be specifically set before
// each call to `genAtomicOperation`.
mlir::Operation *firstOp = genAtomicOperation(
converter, semaCtx, loc, stmtCtx, analysis.op0.what, atomAddr, atom,
*get(analysis.op0.assign), hint, memOrder, preAt, atomicAt, postAt);
assert(firstOp && "Should have created an atomic operation");
atomicAt = getInsertionPointAfter(firstOp);
mlir::Operation *secondOp = nullptr;
if (analysis.op1.what != analysis.None) {
secondOp = genAtomicOperation(
converter, semaCtx, loc, stmtCtx, analysis.op1.what, atomAddr, atom,
*get(analysis.op1.assign), hint, memOrder, preAt, atomicAt, postAt);
}
if (construct.IsCapture()) {
// If this is a capture operation, the first/second ops will be inside
// of it. Set the insertion point to past the capture op itself.
builder.restoreInsertionPoint(postAt);
} else {
if (secondOp) {
builder.setInsertionPointAfter(secondOp);
} else {
builder.setInsertionPointAfter(firstOp);
}
}
}
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,