[libc][math] Refactor acos implementation to header-only in src/__support/math folder. (#148409)
Part of #147386 in preparation for: https://discourse.llvm.org/t/rfc-make-clang-builtin-math-functions-constexpr-with-llvm-libc-to-support-c-23-constexpr-math-functions/86450
This commit is contained in:
parent
b3c9ed151f
commit
cfddb401db
@ -11,6 +11,7 @@
|
||||
|
||||
#include "libc_common.h"
|
||||
|
||||
#include "math/acos.h"
|
||||
#include "math/exp.h"
|
||||
#include "math/exp10.h"
|
||||
#include "math/exp10f.h"
|
||||
|
23
libc/shared/math/acos.h
Normal file
23
libc/shared/math/acos.h
Normal file
@ -0,0 +1,23 @@
|
||||
//===-- Shared acos function ------------------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_SHARED_MATH_ACOS_H
|
||||
#define LLVM_LIBC_SHARED_MATH_ACOS_H
|
||||
|
||||
#include "shared/libc_common.h"
|
||||
#include "src/__support/math/acos.h"
|
||||
|
||||
namespace LIBC_NAMESPACE_DECL {
|
||||
namespace shared {
|
||||
|
||||
using math::acos;
|
||||
|
||||
} // namespace shared
|
||||
} // namespace LIBC_NAMESPACE_DECL
|
||||
|
||||
#endif // LLVM_LIBC_SHARED_MATH_ACOS_H
|
@ -1,3 +1,36 @@
|
||||
add_header_library(
|
||||
acos
|
||||
HDRS
|
||||
acos.h
|
||||
DEPENDS
|
||||
.asin_utils
|
||||
libc.src.__support.math.asin_utils
|
||||
libc.src.__support.FPUtil.double_double
|
||||
libc.src.__support.FPUtil.dyadic_float
|
||||
libc.src.__support.FPUtil.fenv_impl
|
||||
libc.src.__support.FPUtil.fp_bits
|
||||
libc.src.__support.FPUtil.multiply_add
|
||||
libc.src.__support.FPUtil.polyeval
|
||||
libc.src.__support.FPUtil.sqrt
|
||||
libc.src.__support.macros.optimization
|
||||
libc.src.__support.macros.properties.types
|
||||
libc.src.__support.macros.properties.cpu_features
|
||||
)
|
||||
|
||||
add_header_library(
|
||||
asin_utils
|
||||
HDRS
|
||||
asin_utils.h
|
||||
DEPENDS
|
||||
libc.src.__support.integer_literals
|
||||
libc.src.__support.FPUtil.double_double
|
||||
libc.src.__support.FPUtil.dyadic_float
|
||||
libc.src.__support.FPUtil.multiply_add
|
||||
libc.src.__support.FPUtil.nearest_integer
|
||||
libc.src.__support.FPUtil.polyeval
|
||||
libc.src.__support.macros.optimization
|
||||
)
|
||||
|
||||
add_header_library(
|
||||
exp_float_constants
|
||||
HDRS
|
||||
|
285
libc/src/__support/math/acos.h
Normal file
285
libc/src/__support/math/acos.h
Normal file
@ -0,0 +1,285 @@
|
||||
//===-- Implementation header for acos --------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ACOS_H
|
||||
#define LLVM_LIBC_SRC___SUPPORT_MATH_ACOS_H
|
||||
|
||||
#include "asin_utils.h"
|
||||
#include "src/__support/FPUtil/FEnvImpl.h"
|
||||
#include "src/__support/FPUtil/FPBits.h"
|
||||
#include "src/__support/FPUtil/double_double.h"
|
||||
#include "src/__support/FPUtil/dyadic_float.h"
|
||||
#include "src/__support/FPUtil/multiply_add.h"
|
||||
#include "src/__support/FPUtil/sqrt.h"
|
||||
#include "src/__support/macros/config.h"
|
||||
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
|
||||
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
|
||||
|
||||
namespace LIBC_NAMESPACE_DECL {
|
||||
|
||||
namespace math {
|
||||
|
||||
using DoubleDouble = fputil::DoubleDouble;
|
||||
using Float128 = fputil::DyadicFloat<128>;
|
||||
|
||||
static constexpr double acos(double x) {
|
||||
using FPBits = fputil::FPBits<double>;
|
||||
|
||||
FPBits xbits(x);
|
||||
int x_exp = xbits.get_biased_exponent();
|
||||
|
||||
// |x| < 0.5.
|
||||
if (x_exp < FPBits::EXP_BIAS - 1) {
|
||||
// |x| < 2^-55.
|
||||
if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 55)) {
|
||||
// When |x| < 2^-55, acos(x) = pi/2
|
||||
#if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS)
|
||||
return PI_OVER_TWO.hi;
|
||||
#else
|
||||
// Force the evaluation and prevent constant propagation so that it
|
||||
// is rounded correctly for FE_UPWARD rounding mode.
|
||||
return (xbits.abs().get_val() + 0x1.0p-160) + PI_OVER_TWO.hi;
|
||||
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
}
|
||||
|
||||
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
// acos(x) = pi/2 - asin(x)
|
||||
// = pi/2 - x * P(x^2)
|
||||
double p = asin_eval(x * x);
|
||||
return PI_OVER_TWO.hi + fputil::multiply_add(-x, p, PI_OVER_TWO.lo);
|
||||
#else
|
||||
unsigned idx = 0;
|
||||
DoubleDouble x_sq = fputil::exact_mult(x, x);
|
||||
double err = xbits.abs().get_val() * 0x1.0p-51;
|
||||
// Polynomial approximation:
|
||||
// p ~ asin(x)/x
|
||||
DoubleDouble p = asin_eval(x_sq, idx, err);
|
||||
// asin(x) ~ x * p
|
||||
DoubleDouble r0 = fputil::exact_mult(x, p.hi);
|
||||
// acos(x) = pi/2 - asin(x)
|
||||
// ~ pi/2 - x * p
|
||||
// = pi/2 - x * (p.hi + p.lo)
|
||||
double r_hi = fputil::multiply_add(-x, p.hi, PI_OVER_TWO.hi);
|
||||
// Use Dekker's 2SUM algorithm to compute the lower part.
|
||||
double r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo;
|
||||
r_lo = fputil::multiply_add(-x, p.lo, r_lo + PI_OVER_TWO.lo);
|
||||
|
||||
// Ziv's accuracy test.
|
||||
|
||||
double r_upper = r_hi + (r_lo + err);
|
||||
double r_lower = r_hi + (r_lo - err);
|
||||
|
||||
if (LIBC_LIKELY(r_upper == r_lower))
|
||||
return r_upper;
|
||||
|
||||
// Ziv's accuracy test failed, perform 128-bit calculation.
|
||||
|
||||
// Recalculate mod 1/64.
|
||||
idx = static_cast<unsigned>(fputil::nearest_integer(x_sq.hi * 0x1.0p6));
|
||||
|
||||
// Get x^2 - idx/64 exactly. When FMA is available, double-double
|
||||
// multiplication will be correct for all rounding modes. Otherwise we use
|
||||
// Float128 directly.
|
||||
Float128 x_f128(x);
|
||||
|
||||
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
// u = x^2 - idx/64
|
||||
Float128 u_hi(
|
||||
fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, x_sq.hi));
|
||||
Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo));
|
||||
#else
|
||||
Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128);
|
||||
Float128 u = fputil::quick_add(
|
||||
x_sq_f128, Float128(static_cast<double>(idx) * (-0x1.0p-6)));
|
||||
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
|
||||
Float128 p_f128 = asin_eval(u, idx);
|
||||
// Flip the sign of x_f128 to perform subtraction.
|
||||
x_f128.sign = x_f128.sign.negate();
|
||||
Float128 r =
|
||||
fputil::quick_add(PI_OVER_TWO_F128, fputil::quick_mul(x_f128, p_f128));
|
||||
|
||||
return static_cast<double>(r);
|
||||
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
}
|
||||
// |x| >= 0.5
|
||||
|
||||
double x_abs = xbits.abs().get_val();
|
||||
|
||||
// Maintaining the sign:
|
||||
constexpr double SIGN[2] = {1.0, -1.0};
|
||||
double x_sign = SIGN[xbits.is_neg()];
|
||||
// |x| >= 1
|
||||
if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) {
|
||||
// x = +-1, asin(x) = +- pi/2
|
||||
if (x_abs == 1.0) {
|
||||
// x = 1, acos(x) = 0,
|
||||
// x = -1, acos(x) = pi
|
||||
return x == 1.0 ? 0.0 : fputil::multiply_add(-x_sign, PI.hi, PI.lo);
|
||||
}
|
||||
// |x| > 1, return NaN.
|
||||
if (xbits.is_quiet_nan())
|
||||
return x;
|
||||
|
||||
// Set domain error for non-NaN input.
|
||||
if (!xbits.is_nan())
|
||||
fputil::set_errno_if_required(EDOM);
|
||||
|
||||
fputil::raise_except_if_required(FE_INVALID);
|
||||
return FPBits::quiet_nan().get_val();
|
||||
}
|
||||
|
||||
// When |x| >= 0.5, we perform range reduction as follow:
|
||||
//
|
||||
// When 0.5 <= x < 1, let:
|
||||
// y = acos(x)
|
||||
// We will use the double angle formula:
|
||||
// cos(2y) = 1 - 2 sin^2(y)
|
||||
// and the complement angle identity:
|
||||
// x = cos(y) = 1 - 2 sin^2 (y/2)
|
||||
// So:
|
||||
// sin(y/2) = sqrt( (1 - x)/2 )
|
||||
// And hence:
|
||||
// y/2 = asin( sqrt( (1 - x)/2 ) )
|
||||
// Equivalently:
|
||||
// acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) )
|
||||
// Let u = (1 - x)/2, then:
|
||||
// acos(x) = 2 * asin( sqrt(u) )
|
||||
// Moreover, since 0.5 <= x < 1:
|
||||
// 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5,
|
||||
// And hence we can reuse the same polynomial approximation of asin(x) when
|
||||
// |x| <= 0.5:
|
||||
// acos(x) ~ 2 * sqrt(u) * P(u).
|
||||
//
|
||||
// When -1 < x <= -0.5, we reduce to the previous case using the formula:
|
||||
// acos(x) = pi - acos(-x)
|
||||
// = pi - 2 * asin ( sqrt( (1 + x)/2 ) )
|
||||
// ~ pi - 2 * sqrt(u) * P(u),
|
||||
// where u = (1 - |x|)/2.
|
||||
|
||||
// u = (1 - |x|)/2
|
||||
double u = fputil::multiply_add(x_abs, -0.5, 0.5);
|
||||
// v_hi + v_lo ~ sqrt(u).
|
||||
// Let:
|
||||
// h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
|
||||
// Then:
|
||||
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
|
||||
// ~ v_hi + h / (2 * v_hi)
|
||||
// So we can use:
|
||||
// v_lo = h / (2 * v_hi).
|
||||
double v_hi = fputil::sqrt<double>(u);
|
||||
|
||||
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
constexpr DoubleDouble CONST_TERM[2] = {{0.0, 0.0}, PI};
|
||||
DoubleDouble const_term = CONST_TERM[xbits.is_neg()];
|
||||
|
||||
double p = asin_eval(u);
|
||||
double scale = x_sign * 2.0 * v_hi;
|
||||
double r = const_term.hi + fputil::multiply_add(scale, p, const_term.lo);
|
||||
return r;
|
||||
#else
|
||||
|
||||
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
double h = fputil::multiply_add(v_hi, -v_hi, u);
|
||||
#else
|
||||
DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi);
|
||||
double h = (u - v_hi_sq.hi) - v_hi_sq.lo;
|
||||
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
|
||||
// Scale v_lo and v_hi by 2 from the formula:
|
||||
// vh = v_hi * 2
|
||||
// vl = 2*v_lo = h / v_hi.
|
||||
double vh = v_hi * 2.0;
|
||||
double vl = h / v_hi;
|
||||
|
||||
// Polynomial approximation:
|
||||
// p ~ asin(sqrt(u))/sqrt(u)
|
||||
unsigned idx = 0;
|
||||
double err = vh * 0x1.0p-51;
|
||||
|
||||
DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err);
|
||||
|
||||
// Perform computations in double-double arithmetic:
|
||||
// asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
|
||||
DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p);
|
||||
|
||||
double r_hi = 0, r_lo = 0;
|
||||
if (xbits.is_pos()) {
|
||||
r_hi = r0.hi;
|
||||
r_lo = r0.lo;
|
||||
} else {
|
||||
DoubleDouble r = fputil::exact_add(PI.hi, -r0.hi);
|
||||
r_hi = r.hi;
|
||||
r_lo = (PI.lo - r0.lo) + r.lo;
|
||||
}
|
||||
|
||||
// Ziv's accuracy test.
|
||||
|
||||
double r_upper = r_hi + (r_lo + err);
|
||||
double r_lower = r_hi + (r_lo - err);
|
||||
|
||||
if (LIBC_LIKELY(r_upper == r_lower))
|
||||
return r_upper;
|
||||
|
||||
// Ziv's accuracy test failed, we redo the computations in Float128.
|
||||
// Recalculate mod 1/64.
|
||||
idx = static_cast<unsigned>(fputil::nearest_integer(u * 0x1.0p6));
|
||||
|
||||
// After the first step of Newton-Raphson approximating v = sqrt(u), we have
|
||||
// that:
|
||||
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
|
||||
// v_lo = h / (2 * v_hi)
|
||||
// With error:
|
||||
// sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
|
||||
// = -h^2 / (2*v * (sqrt(u) + v)^2).
|
||||
// Since:
|
||||
// (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
|
||||
// we can add another correction term to (v_hi + v_lo) that is:
|
||||
// v_ll = -h^2 / (2*v_hi * 4u)
|
||||
// = -v_lo * (h / 4u)
|
||||
// = -vl * (h / 8u),
|
||||
// making the errors:
|
||||
// sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
|
||||
// well beyond 128-bit precision needed.
|
||||
|
||||
// Get the rounding error of vl = 2 * v_lo ~ h / vh
|
||||
// Get full product of vh * vl
|
||||
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi;
|
||||
#else
|
||||
DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl);
|
||||
double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
|
||||
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
// vll = 2*v_ll = -vl * (h / (4u)).
|
||||
double t = h * (-0.25) / u;
|
||||
double vll = fputil::multiply_add(vl, t, vl_lo);
|
||||
// m_v = -(v_hi + v_lo + v_ll).
|
||||
Float128 m_v = fputil::quick_add(
|
||||
Float128(vh), fputil::quick_add(Float128(vl), Float128(vll)));
|
||||
m_v.sign = xbits.sign();
|
||||
|
||||
// Perform computations in Float128:
|
||||
// acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1,
|
||||
// = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5.
|
||||
Float128 y_f128(fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, u));
|
||||
|
||||
Float128 p_f128 = asin_eval(y_f128, idx);
|
||||
Float128 r_f128 = fputil::quick_mul(m_v, p_f128);
|
||||
|
||||
if (xbits.is_neg())
|
||||
r_f128 = fputil::quick_add(PI_F128, r_f128);
|
||||
|
||||
return static_cast<double>(r_f128);
|
||||
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
}
|
||||
|
||||
} // namespace math
|
||||
|
||||
} // namespace LIBC_NAMESPACE_DECL
|
||||
|
||||
#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ACOS_H
|
@ -6,8 +6,8 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_SRC_MATH_GENERIC_ASIN_UTILS_H
|
||||
#define LLVM_LIBC_SRC_MATH_GENERIC_ASIN_UTILS_H
|
||||
#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ASIN_UTILS_H
|
||||
#define LLVM_LIBC_SRC___SUPPORT_MATH_ASIN_UTILS_H
|
||||
|
||||
#include "src/__support/FPUtil/PolyEval.h"
|
||||
#include "src/__support/FPUtil/double_double.h"
|
||||
@ -16,7 +16,6 @@
|
||||
#include "src/__support/FPUtil/nearest_integer.h"
|
||||
#include "src/__support/integer_literals.h"
|
||||
#include "src/__support/macros/config.h"
|
||||
#include "src/__support/macros/optimization.h"
|
||||
|
||||
namespace LIBC_NAMESPACE_DECL {
|
||||
|
||||
@ -25,10 +24,10 @@ namespace {
|
||||
using DoubleDouble = fputil::DoubleDouble;
|
||||
using Float128 = fputil::DyadicFloat<128>;
|
||||
|
||||
constexpr DoubleDouble PI = {0x1.1a62633145c07p-53, 0x1.921fb54442d18p1};
|
||||
static constexpr DoubleDouble PI = {0x1.1a62633145c07p-53, 0x1.921fb54442d18p1};
|
||||
|
||||
constexpr DoubleDouble PI_OVER_TWO = {0x1.1a62633145c07p-54,
|
||||
0x1.921fb54442d18p0};
|
||||
static constexpr DoubleDouble PI_OVER_TWO = {0x1.1a62633145c07p-54,
|
||||
0x1.921fb54442d18p0};
|
||||
|
||||
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
|
||||
@ -39,14 +38,14 @@ constexpr DoubleDouble PI_OVER_TWO = {0x1.1a62633145c07p-54,
|
||||
// > dirtyinfnorm(asin(x)/x - P, [0, 0.5]);
|
||||
// 0x1.1a71ef0a0f26a9fb7ed7e41dee788b13d1770db3dp-52
|
||||
|
||||
constexpr double ASIN_COEFFS[12] = {
|
||||
static constexpr double ASIN_COEFFS[12] = {
|
||||
0x1.0000000000000p0, 0x1.5555555556dcfp-3, 0x1.3333333082e11p-4,
|
||||
0x1.6db6dd14099edp-5, 0x1.f1c69b35bf81fp-6, 0x1.6e97194225a67p-6,
|
||||
0x1.1babddb82ce12p-6, 0x1.d55bd078600d6p-7, 0x1.33328959e63d6p-7,
|
||||
0x1.2b5993bda1d9bp-6, -0x1.806aff270bf25p-7, 0x1.02614e5ed3936p-5,
|
||||
};
|
||||
|
||||
LIBC_INLINE double asin_eval(double u) {
|
||||
LIBC_INLINE static constexpr double asin_eval(double u) {
|
||||
double u2 = u * u;
|
||||
double c0 = fputil::multiply_add(u, ASIN_COEFFS[1], ASIN_COEFFS[0]);
|
||||
double c1 = fputil::multiply_add(u, ASIN_COEFFS[3], ASIN_COEFFS[2]);
|
||||
@ -124,7 +123,7 @@ LIBC_INLINE double asin_eval(double u) {
|
||||
// > dirtyinfnorm(asin(x)/x - P, [-1/64, 1/64]);
|
||||
// 0x1.999075402cafp-83
|
||||
|
||||
constexpr double ASIN_COEFFS[9][12] = {
|
||||
static constexpr double ASIN_COEFFS[9][12] = {
|
||||
{1.0, 0.0, 0x1.5555555555555p-3, 0x1.5555555555555p-57,
|
||||
0x1.3333333333333p-4, 0x1.6db6db6db6db7p-5, 0x1.f1c71c71c71c7p-6,
|
||||
0x1.6e8ba2e8ba2e9p-6, 0x1.1c4ec4ec4ec4fp-6, 0x1.c99999999999ap-7,
|
||||
@ -164,8 +163,8 @@ constexpr double ASIN_COEFFS[9][12] = {
|
||||
};
|
||||
|
||||
// We calculate the lower part of the approximation P(u).
|
||||
LIBC_INLINE DoubleDouble asin_eval(const DoubleDouble &u, unsigned &idx,
|
||||
double &err) {
|
||||
LIBC_INLINE static DoubleDouble asin_eval(const DoubleDouble &u, unsigned &idx,
|
||||
double &err) {
|
||||
using fputil::multiply_add;
|
||||
// k = round(u * 32).
|
||||
double k = fputil::nearest_integer(u.hi * 0x1.0p5);
|
||||
@ -239,7 +238,7 @@ LIBC_INLINE DoubleDouble asin_eval(const DoubleDouble &u, unsigned &idx,
|
||||
// + (676039 x^24)/104857600 + (1300075 x^26)/226492416 +
|
||||
// + (5014575 x^28)/973078528 + (9694845 x^30)/2080374784.
|
||||
|
||||
constexpr Float128 ASIN_COEFFS_F128[17][16] = {
|
||||
static constexpr Float128 ASIN_COEFFS_F128[17][16] = {
|
||||
{
|
||||
{Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128},
|
||||
{Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128},
|
||||
@ -548,13 +547,14 @@ constexpr Float128 ASIN_COEFFS_F128[17][16] = {
|
||||
},
|
||||
};
|
||||
|
||||
constexpr Float128 PI_OVER_TWO_F128 = {
|
||||
static constexpr Float128 PI_OVER_TWO_F128 = {
|
||||
Sign::POS, -127, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
|
||||
|
||||
constexpr Float128 PI_F128 = {Sign::POS, -126,
|
||||
0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
|
||||
static constexpr Float128 PI_F128 = {
|
||||
Sign::POS, -126, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
|
||||
|
||||
LIBC_INLINE Float128 asin_eval(const Float128 &u, unsigned idx) {
|
||||
LIBC_INLINE static constexpr Float128 asin_eval(const Float128 &u,
|
||||
unsigned idx) {
|
||||
return fputil::polyeval(u, ASIN_COEFFS_F128[idx][0], ASIN_COEFFS_F128[idx][1],
|
||||
ASIN_COEFFS_F128[idx][2], ASIN_COEFFS_F128[idx][3],
|
||||
ASIN_COEFFS_F128[idx][4], ASIN_COEFFS_F128[idx][5],
|
||||
@ -571,4 +571,4 @@ LIBC_INLINE Float128 asin_eval(const Float128 &u, unsigned idx) {
|
||||
|
||||
} // namespace LIBC_NAMESPACE_DECL
|
||||
|
||||
#endif // LLVM_LIBC_SRC_MATH_GENERIC_ASIN_UTILS_H
|
||||
#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ASIN_UTILS_H
|
@ -4016,20 +4016,6 @@ add_entrypoint_object(
|
||||
libc.src.__support.macros.properties.types
|
||||
)
|
||||
|
||||
add_header_library(
|
||||
asin_utils
|
||||
HDRS
|
||||
atan_utils.h
|
||||
DEPENDS
|
||||
libc.src.__support.integer_literals
|
||||
libc.src.__support.FPUtil.double_double
|
||||
libc.src.__support.FPUtil.dyadic_float
|
||||
libc.src.__support.FPUtil.multiply_add
|
||||
libc.src.__support.FPUtil.nearest_integer
|
||||
libc.src.__support.FPUtil.polyeval
|
||||
libc.src.__support.macros.optimization
|
||||
)
|
||||
|
||||
add_entrypoint_object(
|
||||
asin
|
||||
SRCS
|
||||
@ -4037,7 +4023,7 @@ add_entrypoint_object(
|
||||
HDRS
|
||||
../asin.h
|
||||
DEPENDS
|
||||
.asin_utils
|
||||
libc.src.__support.math.asin_utils
|
||||
libc.src.__support.FPUtil.double_double
|
||||
libc.src.__support.FPUtil.dyadic_float
|
||||
libc.src.__support.FPUtil.fenv_impl
|
||||
@ -4092,17 +4078,7 @@ add_entrypoint_object(
|
||||
HDRS
|
||||
../acos.h
|
||||
DEPENDS
|
||||
.asin_utils
|
||||
libc.src.__support.FPUtil.double_double
|
||||
libc.src.__support.FPUtil.dyadic_float
|
||||
libc.src.__support.FPUtil.fenv_impl
|
||||
libc.src.__support.FPUtil.fp_bits
|
||||
libc.src.__support.FPUtil.multiply_add
|
||||
libc.src.__support.FPUtil.polyeval
|
||||
libc.src.__support.FPUtil.sqrt
|
||||
libc.src.__support.macros.optimization
|
||||
libc.src.__support.macros.properties.types
|
||||
libc.src.__support.macros.properties.cpu_features
|
||||
libc.src.__support.math.acos
|
||||
)
|
||||
|
||||
add_entrypoint_object(
|
||||
|
@ -7,272 +7,10 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/math/acos.h"
|
||||
#include "asin_utils.h"
|
||||
#include "src/__support/FPUtil/FEnvImpl.h"
|
||||
#include "src/__support/FPUtil/FPBits.h"
|
||||
#include "src/__support/FPUtil/PolyEval.h"
|
||||
#include "src/__support/FPUtil/double_double.h"
|
||||
#include "src/__support/FPUtil/dyadic_float.h"
|
||||
#include "src/__support/FPUtil/multiply_add.h"
|
||||
#include "src/__support/FPUtil/sqrt.h"
|
||||
#include "src/__support/macros/config.h"
|
||||
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
|
||||
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
|
||||
#include "src/__support/math/acos.h"
|
||||
|
||||
namespace LIBC_NAMESPACE_DECL {
|
||||
|
||||
using DoubleDouble = fputil::DoubleDouble;
|
||||
using Float128 = fputil::DyadicFloat<128>;
|
||||
|
||||
LLVM_LIBC_FUNCTION(double, acos, (double x)) {
|
||||
using FPBits = fputil::FPBits<double>;
|
||||
|
||||
FPBits xbits(x);
|
||||
int x_exp = xbits.get_biased_exponent();
|
||||
|
||||
// |x| < 0.5.
|
||||
if (x_exp < FPBits::EXP_BIAS - 1) {
|
||||
// |x| < 2^-55.
|
||||
if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 55)) {
|
||||
// When |x| < 2^-55, acos(x) = pi/2
|
||||
#if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS)
|
||||
return PI_OVER_TWO.hi;
|
||||
#else
|
||||
// Force the evaluation and prevent constant propagation so that it
|
||||
// is rounded correctly for FE_UPWARD rounding mode.
|
||||
return (xbits.abs().get_val() + 0x1.0p-160) + PI_OVER_TWO.hi;
|
||||
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
}
|
||||
|
||||
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
// acos(x) = pi/2 - asin(x)
|
||||
// = pi/2 - x * P(x^2)
|
||||
double p = asin_eval(x * x);
|
||||
return PI_OVER_TWO.hi + fputil::multiply_add(-x, p, PI_OVER_TWO.lo);
|
||||
#else
|
||||
unsigned idx;
|
||||
DoubleDouble x_sq = fputil::exact_mult(x, x);
|
||||
double err = xbits.abs().get_val() * 0x1.0p-51;
|
||||
// Polynomial approximation:
|
||||
// p ~ asin(x)/x
|
||||
DoubleDouble p = asin_eval(x_sq, idx, err);
|
||||
// asin(x) ~ x * p
|
||||
DoubleDouble r0 = fputil::exact_mult(x, p.hi);
|
||||
// acos(x) = pi/2 - asin(x)
|
||||
// ~ pi/2 - x * p
|
||||
// = pi/2 - x * (p.hi + p.lo)
|
||||
double r_hi = fputil::multiply_add(-x, p.hi, PI_OVER_TWO.hi);
|
||||
// Use Dekker's 2SUM algorithm to compute the lower part.
|
||||
double r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo;
|
||||
r_lo = fputil::multiply_add(-x, p.lo, r_lo + PI_OVER_TWO.lo);
|
||||
|
||||
// Ziv's accuracy test.
|
||||
|
||||
double r_upper = r_hi + (r_lo + err);
|
||||
double r_lower = r_hi + (r_lo - err);
|
||||
|
||||
if (LIBC_LIKELY(r_upper == r_lower))
|
||||
return r_upper;
|
||||
|
||||
// Ziv's accuracy test failed, perform 128-bit calculation.
|
||||
|
||||
// Recalculate mod 1/64.
|
||||
idx = static_cast<unsigned>(fputil::nearest_integer(x_sq.hi * 0x1.0p6));
|
||||
|
||||
// Get x^2 - idx/64 exactly. When FMA is available, double-double
|
||||
// multiplication will be correct for all rounding modes. Otherwise we use
|
||||
// Float128 directly.
|
||||
Float128 x_f128(x);
|
||||
|
||||
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
// u = x^2 - idx/64
|
||||
Float128 u_hi(
|
||||
fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, x_sq.hi));
|
||||
Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo));
|
||||
#else
|
||||
Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128);
|
||||
Float128 u = fputil::quick_add(
|
||||
x_sq_f128, Float128(static_cast<double>(idx) * (-0x1.0p-6)));
|
||||
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
|
||||
Float128 p_f128 = asin_eval(u, idx);
|
||||
// Flip the sign of x_f128 to perform subtraction.
|
||||
x_f128.sign = x_f128.sign.negate();
|
||||
Float128 r =
|
||||
fputil::quick_add(PI_OVER_TWO_F128, fputil::quick_mul(x_f128, p_f128));
|
||||
|
||||
return static_cast<double>(r);
|
||||
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
}
|
||||
// |x| >= 0.5
|
||||
|
||||
double x_abs = xbits.abs().get_val();
|
||||
|
||||
// Maintaining the sign:
|
||||
constexpr double SIGN[2] = {1.0, -1.0};
|
||||
double x_sign = SIGN[xbits.is_neg()];
|
||||
// |x| >= 1
|
||||
if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) {
|
||||
// x = +-1, asin(x) = +- pi/2
|
||||
if (x_abs == 1.0) {
|
||||
// x = 1, acos(x) = 0,
|
||||
// x = -1, acos(x) = pi
|
||||
return x == 1.0 ? 0.0 : fputil::multiply_add(-x_sign, PI.hi, PI.lo);
|
||||
}
|
||||
// |x| > 1, return NaN.
|
||||
if (xbits.is_quiet_nan())
|
||||
return x;
|
||||
|
||||
// Set domain error for non-NaN input.
|
||||
if (!xbits.is_nan())
|
||||
fputil::set_errno_if_required(EDOM);
|
||||
|
||||
fputil::raise_except_if_required(FE_INVALID);
|
||||
return FPBits::quiet_nan().get_val();
|
||||
}
|
||||
|
||||
// When |x| >= 0.5, we perform range reduction as follow:
|
||||
//
|
||||
// When 0.5 <= x < 1, let:
|
||||
// y = acos(x)
|
||||
// We will use the double angle formula:
|
||||
// cos(2y) = 1 - 2 sin^2(y)
|
||||
// and the complement angle identity:
|
||||
// x = cos(y) = 1 - 2 sin^2 (y/2)
|
||||
// So:
|
||||
// sin(y/2) = sqrt( (1 - x)/2 )
|
||||
// And hence:
|
||||
// y/2 = asin( sqrt( (1 - x)/2 ) )
|
||||
// Equivalently:
|
||||
// acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) )
|
||||
// Let u = (1 - x)/2, then:
|
||||
// acos(x) = 2 * asin( sqrt(u) )
|
||||
// Moreover, since 0.5 <= x < 1:
|
||||
// 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5,
|
||||
// And hence we can reuse the same polynomial approximation of asin(x) when
|
||||
// |x| <= 0.5:
|
||||
// acos(x) ~ 2 * sqrt(u) * P(u).
|
||||
//
|
||||
// When -1 < x <= -0.5, we reduce to the previous case using the formula:
|
||||
// acos(x) = pi - acos(-x)
|
||||
// = pi - 2 * asin ( sqrt( (1 + x)/2 ) )
|
||||
// ~ pi - 2 * sqrt(u) * P(u),
|
||||
// where u = (1 - |x|)/2.
|
||||
|
||||
// u = (1 - |x|)/2
|
||||
double u = fputil::multiply_add(x_abs, -0.5, 0.5);
|
||||
// v_hi + v_lo ~ sqrt(u).
|
||||
// Let:
|
||||
// h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
|
||||
// Then:
|
||||
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
|
||||
// ~ v_hi + h / (2 * v_hi)
|
||||
// So we can use:
|
||||
// v_lo = h / (2 * v_hi).
|
||||
double v_hi = fputil::sqrt<double>(u);
|
||||
|
||||
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
constexpr DoubleDouble CONST_TERM[2] = {{0.0, 0.0}, PI};
|
||||
DoubleDouble const_term = CONST_TERM[xbits.is_neg()];
|
||||
|
||||
double p = asin_eval(u);
|
||||
double scale = x_sign * 2.0 * v_hi;
|
||||
double r = const_term.hi + fputil::multiply_add(scale, p, const_term.lo);
|
||||
return r;
|
||||
#else
|
||||
|
||||
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
double h = fputil::multiply_add(v_hi, -v_hi, u);
|
||||
#else
|
||||
DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi);
|
||||
double h = (u - v_hi_sq.hi) - v_hi_sq.lo;
|
||||
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
|
||||
// Scale v_lo and v_hi by 2 from the formula:
|
||||
// vh = v_hi * 2
|
||||
// vl = 2*v_lo = h / v_hi.
|
||||
double vh = v_hi * 2.0;
|
||||
double vl = h / v_hi;
|
||||
|
||||
// Polynomial approximation:
|
||||
// p ~ asin(sqrt(u))/sqrt(u)
|
||||
unsigned idx;
|
||||
double err = vh * 0x1.0p-51;
|
||||
|
||||
DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err);
|
||||
|
||||
// Perform computations in double-double arithmetic:
|
||||
// asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
|
||||
DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p);
|
||||
|
||||
double r_hi, r_lo;
|
||||
if (xbits.is_pos()) {
|
||||
r_hi = r0.hi;
|
||||
r_lo = r0.lo;
|
||||
} else {
|
||||
DoubleDouble r = fputil::exact_add(PI.hi, -r0.hi);
|
||||
r_hi = r.hi;
|
||||
r_lo = (PI.lo - r0.lo) + r.lo;
|
||||
}
|
||||
|
||||
// Ziv's accuracy test.
|
||||
|
||||
double r_upper = r_hi + (r_lo + err);
|
||||
double r_lower = r_hi + (r_lo - err);
|
||||
|
||||
if (LIBC_LIKELY(r_upper == r_lower))
|
||||
return r_upper;
|
||||
|
||||
// Ziv's accuracy test failed, we redo the computations in Float128.
|
||||
// Recalculate mod 1/64.
|
||||
idx = static_cast<unsigned>(fputil::nearest_integer(u * 0x1.0p6));
|
||||
|
||||
// After the first step of Newton-Raphson approximating v = sqrt(u), we have
|
||||
// that:
|
||||
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
|
||||
// v_lo = h / (2 * v_hi)
|
||||
// With error:
|
||||
// sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
|
||||
// = -h^2 / (2*v * (sqrt(u) + v)^2).
|
||||
// Since:
|
||||
// (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
|
||||
// we can add another correction term to (v_hi + v_lo) that is:
|
||||
// v_ll = -h^2 / (2*v_hi * 4u)
|
||||
// = -v_lo * (h / 4u)
|
||||
// = -vl * (h / 8u),
|
||||
// making the errors:
|
||||
// sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
|
||||
// well beyond 128-bit precision needed.
|
||||
|
||||
// Get the rounding error of vl = 2 * v_lo ~ h / vh
|
||||
// Get full product of vh * vl
|
||||
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi;
|
||||
#else
|
||||
DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl);
|
||||
double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
|
||||
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
||||
// vll = 2*v_ll = -vl * (h / (4u)).
|
||||
double t = h * (-0.25) / u;
|
||||
double vll = fputil::multiply_add(vl, t, vl_lo);
|
||||
// m_v = -(v_hi + v_lo + v_ll).
|
||||
Float128 m_v = fputil::quick_add(
|
||||
Float128(vh), fputil::quick_add(Float128(vl), Float128(vll)));
|
||||
m_v.sign = xbits.sign();
|
||||
|
||||
// Perform computations in Float128:
|
||||
// acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1,
|
||||
// = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5.
|
||||
Float128 y_f128(fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, u));
|
||||
|
||||
Float128 p_f128 = asin_eval(y_f128, idx);
|
||||
Float128 r_f128 = fputil::quick_mul(m_v, p_f128);
|
||||
|
||||
if (xbits.is_neg())
|
||||
r_f128 = fputil::quick_add(PI_F128, r_f128);
|
||||
|
||||
return static_cast<double>(r_f128);
|
||||
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
}
|
||||
LLVM_LIBC_FUNCTION(double, acos, (double x)) { return math::acos(x); }
|
||||
|
||||
} // namespace LIBC_NAMESPACE_DECL
|
||||
|
@ -7,7 +7,6 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/math/asin.h"
|
||||
#include "asin_utils.h"
|
||||
#include "src/__support/FPUtil/FEnvImpl.h"
|
||||
#include "src/__support/FPUtil/FPBits.h"
|
||||
#include "src/__support/FPUtil/PolyEval.h"
|
||||
@ -18,6 +17,7 @@
|
||||
#include "src/__support/macros/config.h"
|
||||
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
|
||||
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
|
||||
#include "src/__support/math/asin_utils.h"
|
||||
|
||||
namespace LIBC_NAMESPACE_DECL {
|
||||
|
||||
|
@ -2077,6 +2077,38 @@ libc_support_library(
|
||||
],
|
||||
)
|
||||
|
||||
libc_support_library(
|
||||
name = "__support_math_acos",
|
||||
hdrs = ["src/__support/math/acos.h"],
|
||||
deps = [
|
||||
":__support_math_asin_utils",
|
||||
":__support_fputil_double_double",
|
||||
":__support_fputil_dyadic_float",
|
||||
":__support_fputil_fenv_impl",
|
||||
":__support_fputil_fp_bits",
|
||||
":__support_fputil_multiply_add",
|
||||
":__support_fputil_polyeval",
|
||||
":__support_fputil_sqrt",
|
||||
":__support_macros_optimization",
|
||||
":__support_macros_properties_types",
|
||||
":__support_macros_properties_cpu_features",
|
||||
],
|
||||
)
|
||||
|
||||
libc_support_library(
|
||||
name = "__support_math_asin_utils",
|
||||
hdrs = ["src/__support/math/asin_utils.h"],
|
||||
deps = [
|
||||
":__support_integer_literals",
|
||||
":__support_fputil_double_double",
|
||||
":__support_fputil_dyadic_float",
|
||||
":__support_fputil_multiply_add",
|
||||
":__support_fputil_nearest_integer",
|
||||
":__support_fputil_polyeval",
|
||||
":__support_macros_optimization",
|
||||
],
|
||||
)
|
||||
|
||||
libc_support_library(
|
||||
name = "__support_math_exp_float_constants",
|
||||
hdrs = ["src/__support/math/exp_float_constants.h"],
|
||||
@ -2554,6 +2586,13 @@ libc_function(
|
||||
|
||||
################################ math targets ##################################
|
||||
|
||||
libc_math_function(
|
||||
name = "acos",
|
||||
additional_deps = [
|
||||
":__support_math_acos",
|
||||
],
|
||||
)
|
||||
|
||||
libc_math_function(
|
||||
name = "acosf",
|
||||
additional_deps = [
|
||||
|
Loading…
x
Reference in New Issue
Block a user