[flang][fir] Support promoting fir.do_loop with results to affine.for. (#137790)

Co-authored-by: yanming <ming.yan@terapines.com>
This commit is contained in:
MingYan 2025-05-09 10:55:21 +08:00 committed by GitHub
parent 4bcc083a72
commit db2d5762eb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 120 additions and 5 deletions

View File

@ -49,8 +49,9 @@ struct AffineIfAnalysis;
/// second when doing rewrite.
struct AffineFunctionAnalysis {
explicit AffineFunctionAnalysis(mlir::func::FuncOp funcOp) {
for (fir::DoLoopOp op : funcOp.getOps<fir::DoLoopOp>())
loopAnalysisMap.try_emplace(op, op, *this);
funcOp->walk([&](fir::DoLoopOp doloop) {
loopAnalysisMap.try_emplace(doloop, doloop, *this);
});
}
AffineLoopAnalysis getChildLoopAnalysis(fir::DoLoopOp op) const;
@ -102,10 +103,23 @@ private:
return true;
}
bool analysisResults(fir::DoLoopOp loopOperation) {
if (loopOperation.getFinalValue() &&
!loopOperation.getResult(0).use_empty()) {
LLVM_DEBUG(
llvm::dbgs()
<< "AffineLoopAnalysis: cannot promote loop final value\n";);
return false;
}
return true;
}
bool analyzeLoop(fir::DoLoopOp loopOperation,
AffineFunctionAnalysis &functionAnalysis) {
LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: \n"; loopOperation.dump(););
return analyzeMemoryAccess(loopOperation) &&
analysisResults(loopOperation) &&
analyzeBody(loopOperation, functionAnalysis);
}
@ -461,14 +475,28 @@ public:
LLVM_ATTRIBUTE_UNUSED auto loopAnalysis =
functionAnalysis.getChildLoopAnalysis(loop);
auto &loopOps = loop.getBody()->getOperations();
auto resultOp = cast<fir::ResultOp>(loop.getBody()->getTerminator());
auto results = resultOp.getOperands();
auto loopResults = loop->getResults();
auto loopAndIndex = createAffineFor(loop, rewriter);
auto affineFor = loopAndIndex.first;
auto inductionVar = loopAndIndex.second;
if (loop.getFinalValue()) {
results = results.drop_front();
loopResults = loopResults.drop_front();
}
rewriter.startOpModification(affineFor.getOperation());
affineFor.getBody()->getOperations().splice(
std::prev(affineFor.getBody()->end()), loopOps, loopOps.begin(),
std::prev(loopOps.end()));
rewriter.replaceAllUsesWith(loop.getRegionIterArgs(),
affineFor.getRegionIterArgs());
if (!results.empty()) {
rewriter.setInsertionPointToEnd(affineFor.getBody());
rewriter.create<affine::AffineYieldOp>(resultOp->getLoc(), results);
}
rewriter.finalizeOpModification(affineFor.getOperation());
rewriter.startOpModification(loop.getOperation());
@ -479,7 +507,8 @@ public:
LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: loop rewriten to:\n";
affineFor.dump(););
rewriter.replaceOp(loop, affineFor.getOperation()->getResults());
rewriter.replaceAllUsesWith(loopResults, affineFor->getResults());
rewriter.eraseOp(loop);
return success();
}
@ -503,7 +532,7 @@ private:
ValueRange(op.getUpperBound()),
mlir::AffineMap::get(0, 1,
1 + mlir::getAffineSymbolExpr(0, op.getContext())),
step);
step, op.getIterOperands());
return std::make_pair(affineFor, affineFor.getInductionVar());
}
@ -528,7 +557,7 @@ private:
genericUpperBound.getResult(),
mlir::AffineMap::get(0, 1,
1 + mlir::getAffineSymbolExpr(0, op.getContext())),
1);
1, op.getIterOperands());
rewriter.setInsertionPointToStart(affineFor.getBody());
auto actualIndex = rewriter.create<affine::AffineApplyOp>(
op.getLoc(), actualIndexMap,

View File

@ -131,3 +131,89 @@ func.func @loop_with_if(%a: !arr_d1, %v: f32) {
// CHECK: }
// CHECK: return
// CHECK: }
func.func @loop_with_result(%arg0: !fir.ref<!fir.array<100xf32>>, %arg1: !fir.ref<!fir.array<100x100xf32>>, %arg2: !fir.ref<!fir.array<100xf32>>) -> f32 {
%c1 = arith.constant 1 : index
%cst = arith.constant 0.000000e+00 : f32
%c100 = arith.constant 100 : index
%0 = fir.shape %c100 : (index) -> !fir.shape<1>
%1 = fir.shape %c100, %c100 : (index, index) -> !fir.shape<2>
%2 = fir.alloca i32
%3:2 = fir.do_loop %arg3 = %c1 to %c100 step %c1 iter_args(%arg4 = %cst) -> (index, f32) {
%8 = fir.array_coor %arg0(%0) %arg3 : (!fir.ref<!fir.array<100xf32>>, !fir.shape<1>, index) -> !fir.ref<f32>
%9 = fir.load %8 : !fir.ref<f32>
%10 = arith.addf %arg4, %9 fastmath<contract> : f32
%11 = arith.addi %arg3, %c1 overflow<nsw> : index
fir.result %11, %10 : index, f32
}
%4:2 = fir.do_loop %arg3 = %c1 to %c100 step %c1 iter_args(%arg4 = %3#1) -> (index, f32) {
%8 = fir.array_coor %arg1(%1) %c1, %arg3 : (!fir.ref<!fir.array<100x100xf32>>, !fir.shape<2>, index, index) -> !fir.ref<f32>
%9 = fir.convert %8 : (!fir.ref<f32>) -> !fir.ref<!fir.array<100xf32>>
%10 = fir.do_loop %arg5 = %c1 to %c100 step %c1 iter_args(%arg6 = %arg4) -> (f32) {
%12 = fir.array_coor %9(%0) %arg5 : (!fir.ref<!fir.array<100xf32>>, !fir.shape<1>, index) -> !fir.ref<f32>
%13 = fir.load %12 : !fir.ref<f32>
%14 = arith.addf %arg6, %13 fastmath<contract> : f32
fir.result %14 : f32
}
%11 = arith.addi %arg3, %c1 overflow<nsw> : index
fir.result %11, %10 : index, f32
}
%5:2 = fir.do_loop %arg3 = %c1 to %c100 step %c1 iter_args(%arg4 = %4#1, %arg5 = %cst) -> (f32, f32) {
%8 = fir.array_coor %arg0(%0) %arg3 : (!fir.ref<!fir.array<100xf32>>, !fir.shape<1>, index) -> !fir.ref<f32>
%9 = fir.load %8 : !fir.ref<f32>
%10 = arith.addf %arg4, %9 fastmath<contract> : f32
%11 = fir.array_coor %arg2(%0) %arg3 : (!fir.ref<!fir.array<100xf32>>, !fir.shape<1>, index) -> !fir.ref<f32>
%12 = fir.load %11 : !fir.ref<f32>
%13 = arith.addf %arg5, %12 fastmath<contract> : f32
fir.result %10, %13 : f32, f32
}
%6 = arith.addf %5#0, %5#1 fastmath<contract> : f32
%7 = fir.convert %4#0 : (index) -> i32
fir.store %7 to %2 : !fir.ref<i32>
return %6 : f32
}
// CHECK-LABEL: func.func @loop_with_result(
// CHECK-SAME: %[[ARG0:.*]]: !fir.ref<!fir.array<100xf32>>,
// CHECK-SAME: %[[ARG1:.*]]: !fir.ref<!fir.array<100x100xf32>>,
// CHECK-SAME: %[[ARG2:.*]]: !fir.ref<!fir.array<100xf32>>) -> f32 {
// CHECK: %[[VAL_0:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_1:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_2:.*]] = arith.constant 100 : index
// CHECK: %[[VAL_3:.*]] = fir.shape %[[VAL_2]] : (index) -> !fir.shape<1>
// CHECK: %[[VAL_4:.*]] = fir.shape %[[VAL_2]], %[[VAL_2]] : (index, index) -> !fir.shape<2>
// CHECK: %[[VAL_5:.*]] = fir.alloca i32
// CHECK: %[[VAL_6:.*]] = fir.convert %[[ARG0]] : (!fir.ref<!fir.array<100xf32>>) -> memref<?xf32>
// CHECK: %[[VAL_7:.*]] = affine.for %[[VAL_8:.*]] = %[[VAL_0]] to #{{.*}}(){{\[}}%[[VAL_2]]] iter_args(%[[VAL_9:.*]] = %[[VAL_1]]) -> (f32) {
// CHECK: %[[VAL_10:.*]] = affine.apply #{{.*}}(%[[VAL_8]]){{\[}}%[[VAL_0]], %[[VAL_2]], %[[VAL_0]]]
// CHECK: %[[VAL_11:.*]] = affine.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf32>
// CHECK: %[[VAL_12:.*]] = arith.addf %[[VAL_9]], %[[VAL_11]] fastmath<contract> : f32
// CHECK: affine.yield %[[VAL_12]] : f32
// CHECK: }
// CHECK: %[[VAL_13:.*]]:2 = fir.do_loop %[[VAL_14:.*]] = %[[VAL_0]] to %[[VAL_2]] step %[[VAL_0]] iter_args(%[[VAL_15:.*]] = %[[VAL_7]]) -> (index, f32) {
// CHECK: %[[VAL_16:.*]] = fir.array_coor %[[ARG1]](%[[VAL_4]]) %[[VAL_0]], %[[VAL_14]] : (!fir.ref<!fir.array<100x100xf32>>, !fir.shape<2>, index, index) -> !fir.ref<f32>
// CHECK: %[[VAL_17:.*]] = fir.convert %[[VAL_16]] : (!fir.ref<f32>) -> !fir.ref<!fir.array<100xf32>>
// CHECK: %[[VAL_18:.*]] = fir.convert %[[VAL_17]] : (!fir.ref<!fir.array<100xf32>>) -> memref<?xf32>
// CHECK: %[[VAL_19:.*]] = affine.for %[[VAL_20:.*]] = %[[VAL_0]] to #{{.*}}(){{\[}}%[[VAL_2]]] iter_args(%[[VAL_21:.*]] = %[[VAL_15]]) -> (f32) {
// CHECK: %[[VAL_22:.*]] = affine.apply #{{.*}}(%[[VAL_20]]){{\[}}%[[VAL_0]], %[[VAL_2]], %[[VAL_0]]]
// CHECK: %[[VAL_23:.*]] = affine.load %[[VAL_18]]{{\[}}%[[VAL_22]]] : memref<?xf32>
// CHECK: %[[VAL_24:.*]] = arith.addf %[[VAL_21]], %[[VAL_23]] fastmath<contract> : f32
// CHECK: affine.yield %[[VAL_24]] : f32
// CHECK: }
// CHECK: %[[VAL_25:.*]] = arith.addi %[[VAL_14]], %[[VAL_0]] overflow<nsw> : index
// CHECK: fir.result %[[VAL_25]], %[[VAL_19]] : index, f32
// CHECK: }
// CHECK: %[[VAL_26:.*]] = fir.convert %[[ARG2]] : (!fir.ref<!fir.array<100xf32>>) -> memref<?xf32>
// CHECK: %[[VAL_27:.*]]:2 = affine.for %[[VAL_28:.*]] = %[[VAL_0]] to #{{.*}}(){{\[}}%[[VAL_2]]] iter_args(%[[VAL_29:.*]] = %[[VAL_30:.*]]#1, %[[VAL_31:.*]] = %[[VAL_1]]) -> (f32, f32) {
// CHECK: %[[VAL_32:.*]] = affine.apply #{{.*}}(%[[VAL_28]]){{\[}}%[[VAL_0]], %[[VAL_2]], %[[VAL_0]]]
// CHECK: %[[VAL_33:.*]] = affine.load %[[VAL_6]]{{\[}}%[[VAL_32]]] : memref<?xf32>
// CHECK: %[[VAL_34:.*]] = arith.addf %[[VAL_29]], %[[VAL_33]] fastmath<contract> : f32
// CHECK: %[[VAL_35:.*]] = affine.load %[[VAL_26]]{{\[}}%[[VAL_32]]] : memref<?xf32>
// CHECK: %[[VAL_36:.*]] = arith.addf %[[VAL_31]], %[[VAL_35]] fastmath<contract> : f32
// CHECK: affine.yield %[[VAL_34]], %[[VAL_36]] : f32, f32
// CHECK: }
// CHECK: %[[VAL_37:.*]] = arith.addf %[[VAL_38:.*]]#0, %[[VAL_38]]#1 fastmath<contract> : f32
// CHECK: %[[VAL_39:.*]] = fir.convert %[[VAL_40:.*]]#0 : (index) -> i32
// CHECK: fir.store %[[VAL_39]] to %[[VAL_5]] : !fir.ref<i32>
// CHECK: return %[[VAL_37]] : f32
// CHECK: }