[flang] Updating drivers to create data layout before semantics (#73301)

Preliminary patch to change lowering/code generation to use
llvm::DataLayout information instead of generating "sizeof" GEP (see
https://github.com/llvm/llvm-project/issues/71507).

Fortran Semantic analysis needs to know about the target type size and
alignment to deal with common blocks, and intrinsics like
C_SIZEOF/TRANSFER. This information should be obtained from the
llvm::DataLayout so that it is consistent during the whole compilation
flow.

This change is changing flang-new and bbc drivers to:
1. Create the llvm::TargetMachine so that the data layout of the target
can be obtained before semantics.
2. Sharing bbc/flang-new set-up of the
SemanticConstext.targetCharateristics from the llvm::TargetMachine. For
now, the actual part that set-up the Fortran type size and alignment
from the llvm::DataLayout is left TODO so that this change is mostly an
NFC impacting the drivers.
3. Let the lowering bridge set-up the mlir::Module datalayout attributes
since it is doing it for the target attribute, and that allows the llvm
data layout information to be available during lowering.

For flang-new, the changes are code shuffling: the `llvm::TargetMachine`
instance is moved to `CompilerInvocation` class so that it can be used
to set-up the semantic contexts. `setMLIRDataLayout` is moved to
`flang/Optimizer/Support/DataLayout.h` (it will need to be used from
codegen pass for fir-opt target independent testing.)), and the code
setting-up semantics targetCharacteristics is moved to
`Tools/TargetSetup.h` so that it can be shared with bbc.

As a consequence, LLVM targets must be registered when running
semantics, and it is not possible to run semantics for a target that is
not registered with the -triple option (hence the power pc specific
modules can only be built if the PowerPC target is available.
This commit is contained in:
jeanPerier 2023-12-06 14:20:06 +01:00 committed by GitHub
parent d77067d08a
commit e59e848805
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 455 additions and 219 deletions

View File

@ -21,6 +21,7 @@
#include "flang/Semantics/runtime-type-info.h"
#include "flang/Semantics/semantics.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
namespace Fortran::frontend {
@ -57,6 +58,8 @@ class CompilerInstance {
std::unique_ptr<Fortran::semantics::SemanticsContext> semaContext;
std::unique_ptr<llvm::TargetMachine> targetMachine;
/// The stream for diagnostics from Semantics
llvm::raw_ostream *semaOutputStream = &llvm::errs();
@ -231,6 +234,26 @@ public:
createDefaultOutputFile(bool binary = true, llvm::StringRef baseInput = "",
llvm::StringRef extension = "");
/// {
/// @name Target Machine
/// {
/// Get the target machine.
const llvm::TargetMachine &getTargetMachine() const {
assert(targetMachine && "target machine was not set");
return *targetMachine;
}
llvm::TargetMachine &getTargetMachine() {
assert(targetMachine && "target machine was not set");
return *targetMachine;
}
/// Sets up LLVM's TargetMachine.
bool setUpTargetMachine();
/// Produces the string which represents target feature
std::string getTargetFeatures();
private:
/// Create a new output file
///

View File

@ -26,6 +26,10 @@
#include "llvm/Option/ArgList.h"
#include <memory>
namespace llvm {
class TargetMachine;
}
namespace Fortran::frontend {
/// Fill out Opts based on the options given in Args.
@ -161,7 +165,8 @@ public:
/// Creates and configures semantics context based on the compilation flags.
std::unique_ptr<Fortran::semantics::SemanticsContext>
getSemanticsCtx(Fortran::parser::AllCookedSources &allCookedSources);
getSemanticsCtx(Fortran::parser::AllCookedSources &allCookedSources,
const llvm::TargetMachine &);
std::string &getModuleDir() { return moduleDir; }
const std::string &getModuleDir() const { return moduleDir; }

View File

@ -21,7 +21,6 @@
#include "mlir/IR/BuiltinOps.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Module.h"
#include "llvm/Target/TargetMachine.h"
#include <memory>
namespace Fortran::frontend {
@ -204,8 +203,6 @@ class CodeGenAction : public FrontendAction {
void executeAction() override;
/// Runs prescan, parsing, sema and lowers to MLIR.
bool beginSourceFileAction() override;
/// Sets up LLVM's TargetMachine.
bool setUpTargetMachine();
/// Runs the optimization (aka middle-end) pipeline on the LLVM module
/// associated with this action.
void runOptimizationPipeline(llvm::raw_pwrite_stream &os);
@ -234,7 +231,6 @@ protected:
BackendActionTy action;
std::unique_ptr<llvm::TargetMachine> tm;
/// }
public:
~CodeGenAction() override;

View File

@ -22,6 +22,10 @@
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "mlir/IR/BuiltinOps.h"
namespace llvm {
class DataLayout;
} // namespace llvm
namespace Fortran {
namespace common {
class IntrinsicTypeDefaultKinds;
@ -59,10 +63,12 @@ public:
llvm::StringRef triple, fir::KindMapping &kindMap,
const Fortran::lower::LoweringOptions &loweringOptions,
const std::vector<Fortran::lower::EnvironmentDefault> &envDefaults,
const Fortran::common::LanguageFeatureControl &languageFeatures) {
const Fortran::common::LanguageFeatureControl &languageFeatures,
const llvm::DataLayout *dataLayout = nullptr) {
return LoweringBridge(ctx, semanticsContext, defaultKinds, intrinsics,
targetCharacteristics, allCooked, triple, kindMap,
loweringOptions, envDefaults, languageFeatures);
loweringOptions, envDefaults, languageFeatures,
dataLayout);
}
//===--------------------------------------------------------------------===//
@ -140,7 +146,8 @@ private:
fir::KindMapping &kindMap,
const Fortran::lower::LoweringOptions &loweringOptions,
const std::vector<Fortran::lower::EnvironmentDefault> &envDefaults,
const Fortran::common::LanguageFeatureControl &languageFeatures);
const Fortran::common::LanguageFeatureControl &languageFeatures,
const llvm::DataLayout *dataLayout);
LoweringBridge() = delete;
LoweringBridge(const LoweringBridge &) = delete;

View File

@ -0,0 +1,39 @@
//===-- Optimizer/Support/DataLayout.h --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_OPTIMIZER_SUPPORT_DATALAYOUT_H
#define FORTRAN_OPTIMIZER_SUPPORT_DATALAYOUT_H
namespace mlir {
class ModuleOp;
}
namespace llvm {
class DataLayout;
}
namespace fir::support {
/// Create an mlir::DataLayoutSpecInterface attribute from an llvm::DataLayout
/// and set it on the provided mlir::ModuleOp.
/// Also set the llvm.data_layout attribute with the string representation of
/// the llvm::DataLayout on the module.
/// These attributes are replaced if they were already set.
void setMLIRDataLayout(mlir::ModuleOp mlirModule, const llvm::DataLayout &dl);
/// Create an mlir::DataLayoutSpecInterface from the llvm.data_layout attribute
/// if one is provided. If such attribute is not available, create a default
/// target independent layout when allowDefaultLayout is true. Otherwise do
/// nothing.
void setMLIRDataLayoutFromAttributes(mlir::ModuleOp mlirModule,
bool allowDefaultLayout);
} // namespace fir::support
#endif // FORTRAN_OPTIMIZER_SUPPORT_DATALAYOUT_H

View File

@ -0,0 +1,40 @@
//===-- Tools/TargetSetup.h ------------------------------------- *-C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_TOOLS_TARGET_SETUP_H
#define FORTRAN_TOOLS_TARGET_SETUP_H
#include "flang/Evaluate/target.h"
#include "llvm/Target/TargetMachine.h"
namespace Fortran::tools {
[[maybe_unused]] inline static void setUpTargetCharacteristics(
Fortran::evaluate::TargetCharacteristics &targetCharacteristics,
const llvm::TargetMachine &targetMachine,
const std::string &compilerVersion, const std::string &compilerOptions) {
const llvm::Triple &targetTriple{targetMachine.getTargetTriple()};
// FIXME: Handle real(3) ?
if (targetTriple.getArch() != llvm::Triple::ArchType::x86_64)
targetCharacteristics.DisableType(
Fortran::common::TypeCategory::Real, /*kind=*/10);
targetCharacteristics.set_compilerOptionsString(compilerOptions)
.set_compilerVersionString(compilerVersion);
if (targetTriple.isPPC())
targetCharacteristics.set_isPPC(true);
// TODO: use target machine data layout to set-up the target characteristics
// type size and alignment info.
}
} // namespace Fortran::tools
#endif // FORTRAN_TOOLS_TARGET_SETUP_H

View File

@ -17,11 +17,15 @@
#include "flang/Parser/parsing.h"
#include "flang/Parser/provenance.h"
#include "flang/Semantics/semantics.h"
#include "clang/Basic/DiagnosticFrontend.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/TargetParser.h"
#include "llvm/TargetParser/Triple.h"
using namespace Fortran::frontend;
@ -156,8 +160,10 @@ bool CompilerInstance::executeAction(FrontendAction &act) {
invoc.setFortranOpts();
// Set the encoding to read all input files in based on user input.
allSources->set_encoding(invoc.getFortranOpts().encoding);
if (!setUpTargetMachine())
return false;
// Create the semantics context
semaContext = invoc.getSemanticsCtx(*allCookedSources);
semaContext = invoc.getSemanticsCtx(*allCookedSources, getTargetMachine());
// Set options controlling lowering to FIR.
invoc.setLoweringOptions();
@ -197,3 +203,129 @@ CompilerInstance::createDiagnostics(clang::DiagnosticOptions *opts,
}
return diags;
}
// Get feature string which represents combined explicit target features
// for AMD GPU and the target features specified by the user
static std::string
getExplicitAndImplicitAMDGPUTargetFeatures(clang::DiagnosticsEngine &diags,
const TargetOptions &targetOpts,
const llvm::Triple triple) {
llvm::StringRef cpu = targetOpts.cpu;
llvm::StringMap<bool> implicitFeaturesMap;
std::string errorMsg;
// Get the set of implicit target features
llvm::AMDGPU::fillAMDGPUFeatureMap(cpu, triple, implicitFeaturesMap);
// Add target features specified by the user
for (auto &userFeature : targetOpts.featuresAsWritten) {
std::string userKeyString = userFeature.substr(1);
implicitFeaturesMap[userKeyString] = (userFeature[0] == '+');
}
if (!llvm::AMDGPU::insertWaveSizeFeature(cpu, triple, implicitFeaturesMap,
errorMsg)) {
unsigned diagID = diags.getCustomDiagID(clang::DiagnosticsEngine::Error,
"Unsupported feature ID: %0");
diags.Report(diagID) << errorMsg.data();
return std::string();
}
llvm::SmallVector<std::string> featuresVec;
for (auto &implicitFeatureItem : implicitFeaturesMap) {
featuresVec.push_back((llvm::Twine(implicitFeatureItem.second ? "+" : "-") +
implicitFeatureItem.first().str())
.str());
}
llvm::sort(featuresVec);
return llvm::join(featuresVec, ",");
}
// Get feature string which represents combined explicit target features
// for NVPTX and the target features specified by the user/
// TODO: Have a more robust target conf like `clang/lib/Basic/Targets/NVPTX.cpp`
static std::string
getExplicitAndImplicitNVPTXTargetFeatures(clang::DiagnosticsEngine &diags,
const TargetOptions &targetOpts,
const llvm::Triple triple) {
llvm::StringRef cpu = targetOpts.cpu;
llvm::StringMap<bool> implicitFeaturesMap;
std::string errorMsg;
bool ptxVer = false;
// Add target features specified by the user
for (auto &userFeature : targetOpts.featuresAsWritten) {
llvm::StringRef userKeyString(llvm::StringRef(userFeature).drop_front(1));
implicitFeaturesMap[userKeyString.str()] = (userFeature[0] == '+');
// Check if the user provided a PTX version
if (userKeyString.startswith("ptx"))
ptxVer = true;
}
// Set the default PTX version to `ptx61` if none was provided.
// TODO: set the default PTX version based on the chip.
if (!ptxVer)
implicitFeaturesMap["ptx61"] = true;
// Set the compute capability.
implicitFeaturesMap[cpu.str()] = true;
llvm::SmallVector<std::string> featuresVec;
for (auto &implicitFeatureItem : implicitFeaturesMap) {
featuresVec.push_back((llvm::Twine(implicitFeatureItem.second ? "+" : "-") +
implicitFeatureItem.first().str())
.str());
}
llvm::sort(featuresVec);
return llvm::join(featuresVec, ",");
}
std::string CompilerInstance::getTargetFeatures() {
const TargetOptions &targetOpts = getInvocation().getTargetOpts();
const llvm::Triple triple(targetOpts.triple);
// Clang does not append all target features to the clang -cc1 invocation.
// Some target features are parsed implicitly by clang::TargetInfo child
// class. Clang::TargetInfo classes are the basic clang classes and
// they cannot be reused by Flang.
// That's why we need to extract implicit target features and add
// them to the target features specified by the user
if (triple.isAMDGPU()) {
return getExplicitAndImplicitAMDGPUTargetFeatures(getDiagnostics(),
targetOpts, triple);
} else if (triple.isNVPTX()) {
return getExplicitAndImplicitNVPTXTargetFeatures(getDiagnostics(),
targetOpts, triple);
}
return llvm::join(targetOpts.featuresAsWritten.begin(),
targetOpts.featuresAsWritten.end(), ",");
}
bool CompilerInstance::setUpTargetMachine() {
const TargetOptions &targetOpts = getInvocation().getTargetOpts();
const std::string &theTriple = targetOpts.triple;
// Create `Target`
std::string error;
const llvm::Target *theTarget =
llvm::TargetRegistry::lookupTarget(theTriple, error);
if (!theTarget) {
getDiagnostics().Report(clang::diag::err_fe_unable_to_create_target)
<< error;
return false;
}
// Create `TargetMachine`
const auto &CGOpts = getInvocation().getCodeGenOpts();
std::optional<llvm::CodeGenOptLevel> OptLevelOrNone =
llvm::CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
assert(OptLevelOrNone && "Invalid optimization level!");
llvm::CodeGenOptLevel OptLevel = *OptLevelOrNone;
std::string featuresStr = getTargetFeatures();
targetMachine.reset(theTarget->createTargetMachine(
theTriple, /*CPU=*/targetOpts.cpu,
/*Features=*/featuresStr, llvm::TargetOptions(),
/*Reloc::Model=*/CGOpts.getRelocationModel(),
/*CodeModel::Model=*/std::nullopt, OptLevel));
assert(targetMachine && "Failed to create TargetMachine");
return true;
}

View File

@ -18,6 +18,7 @@
#include "flang/Frontend/PreprocessorOptions.h"
#include "flang/Frontend/TargetOptions.h"
#include "flang/Semantics/semantics.h"
#include "flang/Tools/TargetSetup.h"
#include "flang/Version.inc"
#include "clang/Basic/AllDiagnostics.h"
#include "clang/Basic/DiagnosticDriver.h"
@ -1347,7 +1348,8 @@ void CompilerInvocation::setFortranOpts() {
std::unique_ptr<Fortran::semantics::SemanticsContext>
CompilerInvocation::getSemanticsCtx(
Fortran::parser::AllCookedSources &allCookedSources) {
Fortran::parser::AllCookedSources &allCookedSources,
const llvm::TargetMachine &targetMachine) {
auto &fortranOptions = getFortranOpts();
auto semanticsContext = std::make_unique<semantics::SemanticsContext>(
@ -1360,21 +1362,10 @@ CompilerInvocation::getSemanticsCtx(
.set_moduleFileSuffix(getModuleFileSuffix())
.set_underscoring(getCodeGenOpts().Underscoring);
llvm::Triple targetTriple{llvm::Triple(this->targetOpts.triple)};
// FIXME: Handle real(3) ?
if (targetTriple.getArch() != llvm::Triple::ArchType::x86_64) {
semanticsContext->targetCharacteristics().DisableType(
Fortran::common::TypeCategory::Real, /*kind=*/10);
}
std::string version = Fortran::common::getFlangFullVersion();
semanticsContext->targetCharacteristics()
.set_compilerOptionsString(allCompilerInvocOpts)
.set_compilerVersionString(version);
if (targetTriple.isPPC())
semanticsContext->targetCharacteristics().set_isPPC(true);
std::string compilerVersion = Fortran::common::getFlangFullVersion();
Fortran::tools::setUpTargetCharacteristics(
semanticsContext->targetCharacteristics(), targetMachine, compilerVersion,
allCompilerInvocOpts);
return semanticsContext;
}

View File

@ -21,6 +21,7 @@
#include "flang/Lower/Support/Verifier.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Optimizer/Support/InitFIR.h"
#include "flang/Optimizer/Support/Utils.h"
#include "flang/Optimizer/Transforms/Passes.h"
@ -53,7 +54,6 @@
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/OffloadBinary.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
@ -65,7 +65,6 @@
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/TargetParser/TargetParser.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <memory>
#include <system_error>
@ -139,111 +138,6 @@ bool PrescanAndSemaDebugAction::beginSourceFileAction() {
(generateRtTypeTables() || true);
}
// Get feature string which represents combined explicit target features
// for AMD GPU and the target features specified by the user
static std::string
getExplicitAndImplicitAMDGPUTargetFeatures(CompilerInstance &ci,
const TargetOptions &targetOpts,
const llvm::Triple triple) {
llvm::StringRef cpu = targetOpts.cpu;
llvm::StringMap<bool> implicitFeaturesMap;
std::string errorMsg;
// Get the set of implicit target features
llvm::AMDGPU::fillAMDGPUFeatureMap(cpu, triple, implicitFeaturesMap);
// Add target features specified by the user
for (auto &userFeature : targetOpts.featuresAsWritten) {
std::string userKeyString = userFeature.substr(1);
implicitFeaturesMap[userKeyString] = (userFeature[0] == '+');
}
if (!llvm::AMDGPU::insertWaveSizeFeature(cpu, triple, implicitFeaturesMap,
errorMsg)) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Unsupported feature ID: %0");
ci.getDiagnostics().Report(diagID) << errorMsg.data();
return std::string();
}
llvm::SmallVector<std::string> featuresVec;
for (auto &implicitFeatureItem : implicitFeaturesMap) {
featuresVec.push_back((llvm::Twine(implicitFeatureItem.second ? "+" : "-") +
implicitFeatureItem.first().str())
.str());
}
llvm::sort(featuresVec);
return llvm::join(featuresVec, ",");
}
// Get feature string which represents combined explicit target features
// for NVPTX and the target features specified by the user/
// TODO: Have a more robust target conf like `clang/lib/Basic/Targets/NVPTX.cpp`
static std::string
getExplicitAndImplicitNVPTXTargetFeatures(CompilerInstance &ci,
const TargetOptions &targetOpts,
const llvm::Triple triple) {
llvm::StringRef cpu = targetOpts.cpu;
llvm::StringMap<bool> implicitFeaturesMap;
std::string errorMsg;
bool ptxVer = false;
// Add target features specified by the user
for (auto &userFeature : targetOpts.featuresAsWritten) {
llvm::StringRef userKeyString(llvm::StringRef(userFeature).drop_front(1));
implicitFeaturesMap[userKeyString.str()] = (userFeature[0] == '+');
// Check if the user provided a PTX version
if (userKeyString.startswith("ptx"))
ptxVer = true;
}
// Set the default PTX version to `ptx61` if none was provided.
// TODO: set the default PTX version based on the chip.
if (!ptxVer)
implicitFeaturesMap["ptx61"] = true;
// Set the compute capability.
implicitFeaturesMap[cpu.str()] = true;
llvm::SmallVector<std::string> featuresVec;
for (auto &implicitFeatureItem : implicitFeaturesMap) {
featuresVec.push_back((llvm::Twine(implicitFeatureItem.second ? "+" : "-") +
implicitFeatureItem.first().str())
.str());
}
llvm::sort(featuresVec);
return llvm::join(featuresVec, ",");
}
// Produces the string which represents target feature
static std::string getTargetFeatures(CompilerInstance &ci) {
const TargetOptions &targetOpts = ci.getInvocation().getTargetOpts();
const llvm::Triple triple(targetOpts.triple);
// Clang does not append all target features to the clang -cc1 invocation.
// Some target features are parsed implicitly by clang::TargetInfo child
// class. Clang::TargetInfo classes are the basic clang classes and
// they cannot be reused by Flang.
// That's why we need to extract implicit target features and add
// them to the target features specified by the user
if (triple.isAMDGPU()) {
return getExplicitAndImplicitAMDGPUTargetFeatures(ci, targetOpts, triple);
} else if (triple.isNVPTX()) {
return getExplicitAndImplicitNVPTXTargetFeatures(ci, targetOpts, triple);
}
return llvm::join(targetOpts.featuresAsWritten.begin(),
targetOpts.featuresAsWritten.end(), ",");
}
static void setMLIRDataLayout(mlir::ModuleOp &mlirModule,
const llvm::DataLayout &dl) {
mlir::MLIRContext *context = mlirModule.getContext();
mlirModule->setAttr(
mlir::LLVM::LLVMDialect::getDataLayoutAttrName(),
mlir::StringAttr::get(context, dl.getStringRepresentation()));
mlir::DataLayoutSpecInterface dlSpec = mlir::translateDataLayout(dl, context);
mlirModule->setAttr(mlir::DLTIDialect::kDataLayoutAttrName, dlSpec);
}
static void addDependentLibs(mlir::ModuleOp &mlirModule, CompilerInstance &ci) {
const std::vector<std::string> &libs =
ci.getInvocation().getCodeGenOpts().DependentLibs;
@ -352,6 +246,8 @@ bool CodeGenAction::beginSourceFileAction() {
fir::support::loadDialects(*mlirCtx);
fir::support::registerLLVMTranslation(*mlirCtx);
const llvm::TargetMachine &targetMachine = ci.getTargetMachine();
// If the input is an MLIR file, just parse it and return.
if (this->getCurrentInput().getKind().getLanguage() == Language::MLIR) {
llvm::SourceMgr sourceMgr;
@ -369,10 +265,8 @@ bool CodeGenAction::beginSourceFileAction() {
}
mlirModule = std::make_unique<mlir::ModuleOp>(module.release());
if (!setUpTargetMachine())
return false;
const llvm::DataLayout &dl = tm->createDataLayout();
setMLIRDataLayout(*mlirModule, dl);
const llvm::DataLayout &dl = targetMachine.createDataLayout();
fir::support::setMLIRDataLayout(*mlirModule, dl);
return true;
}
@ -394,6 +288,8 @@ bool CodeGenAction::beginSourceFileAction() {
ci.getSemanticsContext().defaultKinds();
fir::KindMapping kindMap(mlirCtx.get(), llvm::ArrayRef<fir::KindTy>{
fir::fromDefaultKinds(defKinds)});
const llvm::DataLayout &dl = targetMachine.createDataLayout();
lower::LoweringBridge lb = Fortran::lower::LoweringBridge::create(
*mlirCtx, ci.getSemanticsContext(), defKinds,
ci.getSemanticsContext().intrinsics(),
@ -401,27 +297,22 @@ bool CodeGenAction::beginSourceFileAction() {
ci.getParsing().allCooked(), ci.getInvocation().getTargetOpts().triple,
kindMap, ci.getInvocation().getLoweringOpts(),
ci.getInvocation().getFrontendOpts().envDefaults,
ci.getInvocation().getFrontendOpts().features);
ci.getInvocation().getFrontendOpts().features, &dl);
// Fetch module from lb, so we can set
mlirModule = std::make_unique<mlir::ModuleOp>(lb.getModule());
if (!setUpTargetMachine())
return false;
if (ci.getInvocation().getFrontendOpts().features.IsEnabled(
Fortran::common::LanguageFeature::OpenMP)) {
setOffloadModuleInterfaceAttributes(*mlirModule,
ci.getInvocation().getLangOpts());
setOffloadModuleInterfaceTargetAttribute(*mlirModule, tm->getTargetCPU(),
tm->getTargetFeatureString());
setOffloadModuleInterfaceTargetAttribute(
*mlirModule, targetMachine.getTargetCPU(),
targetMachine.getTargetFeatureString());
setOpenMPVersionAttribute(*mlirModule,
ci.getInvocation().getLangOpts().OpenMPVersion);
}
const llvm::DataLayout &dl = tm->createDataLayout();
setMLIRDataLayout(*mlirModule, dl);
// Create a parse tree and lower it to FIR
Fortran::parser::Program &parseTree{*ci.getParsing().parseTree()};
lb.lower(parseTree, ci.getSemanticsContext());
@ -830,7 +721,7 @@ getVScaleRange(CompilerInstance &ci,
return std::pair<unsigned, unsigned>(
langOpts.VScaleMin ? langOpts.VScaleMin : 1, langOpts.VScaleMax);
std::string featuresStr = getTargetFeatures(ci);
std::string featuresStr = ci.getTargetFeatures();
if (featuresStr.find("+sve") != std::string::npos)
return std::pair<unsigned, unsigned>(1, 16);
@ -911,38 +802,6 @@ void CodeGenAction::generateLLVMIR() {
}
}
bool CodeGenAction::setUpTargetMachine() {
CompilerInstance &ci = this->getInstance();
const TargetOptions &targetOpts = ci.getInvocation().getTargetOpts();
const std::string &theTriple = targetOpts.triple;
// Create `Target`
std::string error;
const llvm::Target *theTarget =
llvm::TargetRegistry::lookupTarget(theTriple, error);
if (!theTarget) {
ci.getDiagnostics().Report(clang::diag::err_fe_unable_to_create_target)
<< error;
return false;
}
// Create `TargetMachine`
const auto &CGOpts = ci.getInvocation().getCodeGenOpts();
std::optional<llvm::CodeGenOptLevel> OptLevelOrNone =
llvm::CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
assert(OptLevelOrNone && "Invalid optimization level!");
llvm::CodeGenOptLevel OptLevel = *OptLevelOrNone;
std::string featuresStr = getTargetFeatures(ci);
tm.reset(theTarget->createTargetMachine(
theTriple, /*CPU=*/targetOpts.cpu,
/*Features=*/featuresStr, llvm::TargetOptions(),
/*Reloc::Model=*/CGOpts.getRelocationModel(),
/*CodeModel::Model=*/std::nullopt, OptLevel));
assert(tm && "Failed to create TargetMachine");
return true;
}
static std::unique_ptr<llvm::raw_pwrite_stream>
getOutputStream(CompilerInstance &ci, llvm::StringRef inFile,
BackendActionTy action) {
@ -1020,6 +879,7 @@ void CodeGenAction::runOptimizationPipeline(llvm::raw_pwrite_stream &os) {
auto &diags = getInstance().getDiagnostics();
llvm::OptimizationLevel level = mapToLevel(opts);
llvm::TargetMachine *targetMachine = &getInstance().getTargetMachine();
// Create the analysis managers.
llvm::LoopAnalysisManager lam;
llvm::FunctionAnalysisManager fam;
@ -1033,7 +893,7 @@ void CodeGenAction::runOptimizationPipeline(llvm::raw_pwrite_stream &os) {
llvm::StandardInstrumentations si(llvmModule->getContext(),
opts.DebugPassManager);
si.registerCallbacks(pic, &mam);
llvm::PassBuilder pb(tm.get(), pto, pgoOpt, &pic);
llvm::PassBuilder pb(targetMachine, pto, pgoOpt, &pic);
// Attempt to load pass plugins and register their callbacks with PB.
for (auto &pluginFile : opts.LLVMPassPlugins) {
@ -1299,9 +1159,8 @@ void CodeGenAction::executeAction() {
// Set the triple based on the targetmachine (this comes compiler invocation
// and the command-line target option if specified, or the default if not
// given on the command-line).
if (!setUpTargetMachine())
return;
const std::string &theTriple = tm->getTargetTriple().str();
llvm::TargetMachine &targetMachine = ci.getTargetMachine();
const std::string &theTriple = targetMachine.getTargetTriple().str();
if (llvmModule->getTargetTriple() != theTriple) {
diags.Report(clang::diag::warn_fe_override_module) << theTriple;
@ -1311,7 +1170,7 @@ void CodeGenAction::executeAction() {
// Note that this overwrites any datalayout stored in the LLVM-IR. This avoids
// an assert for incompatible data layout when the code-generation happens.
llvmModule->setTargetTriple(theTriple);
llvmModule->setDataLayout(tm->createDataLayout());
llvmModule->setDataLayout(targetMachine.createDataLayout());
// Embed offload objects specified with -fembed-offload-object
if (!codeGenOpts.OffloadObjects.empty())
@ -1361,7 +1220,7 @@ void CodeGenAction::executeAction() {
if (action == BackendActionTy::Backend_EmitAssembly ||
action == BackendActionTy::Backend_EmitObj) {
generateMachineCodeOrAssemblyImpl(
diags, *tm, action, *llvmModule, codeGenOpts,
diags, targetMachine, action, *llvmModule, codeGenOpts,
ci.isOutputStreamNull() ? *os : ci.getOutputStream());
return;
}

View File

@ -44,6 +44,7 @@
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Transforms/Passes.h"
@ -5089,7 +5090,8 @@ Fortran::lower::LoweringBridge::LoweringBridge(
fir::KindMapping &kindMap,
const Fortran::lower::LoweringOptions &loweringOptions,
const std::vector<Fortran::lower::EnvironmentDefault> &envDefaults,
const Fortran::common::LanguageFeatureControl &languageFeatures)
const Fortran::common::LanguageFeatureControl &languageFeatures,
const llvm::DataLayout *dataLayout)
: semanticsContext{semanticsContext}, defaultKinds{defaultKinds},
intrinsics{intrinsics}, targetCharacteristics{targetCharacteristics},
cooked{&cooked}, context{context}, kindMap{kindMap},
@ -5145,4 +5147,6 @@ Fortran::lower::LoweringBridge::LoweringBridge(
assert(module.get() && "module was not created");
fir::setTargetTriple(*module.get(), triple);
fir::setKindMapping(*module.get(), kindMap);
if (dataLayout)
fir::support::setMLIRDataLayout(*module.get(), *dataLayout);
}

View File

@ -2,6 +2,7 @@ get_property(dialect_libs GLOBAL PROPERTY MLIR_DIALECT_LIBS)
get_property(extension_libs GLOBAL PROPERTY MLIR_EXTENSION_LIBS)
add_flang_library(FIRSupport
DataLayout.cpp
InitFIR.cpp
InternalNames.cpp
@ -20,6 +21,7 @@ add_flang_library(FIRSupport
MLIROpenMPToLLVMIRTranslation
MLIRLLVMToLLVMIRTranslation
MLIRTargetLLVMIRExport
MLIRTargetLLVMIRImport
LINK_COMPONENTS
TargetParser

View File

@ -0,0 +1,47 @@
//===-- Optimizer/Support/DataLayout.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Interfaces/DataLayoutInterfaces.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/Import.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
void fir::support::setMLIRDataLayout(mlir::ModuleOp mlirModule,
const llvm::DataLayout &dl) {
mlir::MLIRContext *context = mlirModule.getContext();
mlirModule->setAttr(
mlir::LLVM::LLVMDialect::getDataLayoutAttrName(),
mlir::StringAttr::get(context, dl.getStringRepresentation()));
mlir::DataLayoutSpecInterface dlSpec = mlir::translateDataLayout(dl, context);
mlirModule->setAttr(mlir::DLTIDialect::kDataLayoutAttrName, dlSpec);
}
void fir::support::setMLIRDataLayoutFromAttributes(mlir::ModuleOp mlirModule,
bool allowDefaultLayout) {
if (mlirModule.getDataLayoutSpec())
return; // Already set.
if (auto dataLayoutString = mlirModule->getAttrOfType<mlir::StringAttr>(
mlir::LLVM::LLVMDialect::getDataLayoutAttrName())) {
llvm::DataLayout llvmDataLayout(dataLayoutString);
fir::support::setMLIRDataLayout(mlirModule, llvmDataLayout);
return;
}
if (!allowDefaultLayout)
return;
llvm::DataLayout llvmDataLayout("");
fir::support::setMLIRDataLayout(mlirModule, llvmDataLayout);
}

View File

@ -0,0 +1,12 @@
// Test that tco tool sets a target independent data layout when none is
// provided. LLVM default data layout aligns i64 with 32 bits.
// RUN: tco -emit-fir %s | FileCheck %s
module {
}
// CHECK: module attributes {
// CHECK-SAME: dlti.dl_spec = #dlti.dl_spec<
// ...
// CHECK-SAME: #dlti.dl_entry<i64, dense<[32, 64]> : vector<2xi64>>,
// ...
// CHECK-SAME: llvm.data_layout = ""

View File

@ -0,0 +1,13 @@
// Test that tco tool preserves incoming llvm.data_layout and creates a
// related dlti.dl_spec attribute. This tests a weird datalayout where
// i64 would be 128 bit aligned.
// RUN: tco -emit-fir %s | FileCheck %s
module attributes {llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:128-i128:128-f80:128-n8:16:32:64-S128"} {
}
// CHECK: module attributes {
// CHECK-SAME: dlti.dl_spec = #dlti.dl_spec<
// ...
// CHECK-SAME: #dlti.dl_entry<i64, dense<128> : vector<2xi64>>,
// ...
// CHECK-SAME: llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:128-i128:128-f80:128-n8:16:32:64-S128"

View File

@ -0,0 +1,9 @@
! Test bbc set-up of the target data layout from the host.
! RUN: bbc %s -o - | FileCheck %s
subroutine test
end subroutine
! CHECK: module attributes {
! CHECK-SAME: dlti.dl_spec = #dlti.dl_spec<
! CHECK-SAME: llvm.data_layout = "{{[^"]}}
! CHECK-SAME: llvm.target_triple = "{{[^"]}}

View File

@ -0,0 +1,10 @@
! Test bbc target override.
! REQUIRES: x86-registered-target
! RUN: bbc %s -target x86_64-unknown-linux-gnu -o - | FileCheck %s
subroutine test
end subroutine
! CHECK: module attributes {
! CHECK-SAME: dlti.dl_spec = #dlti.dl_spec<
! CHECK-SAME: llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128"
! CHECK-SAME: llvm.target_triple = "x86_64-unknown-linux-gnu"

View File

@ -1,3 +1,4 @@
! REQUIRES: aarch64-registered-target
! RUN: %python %S/test_modfile.py %s %flang_fc1 -triple aarch64-unknown-linux-gnu
module m1

View File

@ -1,5 +1,8 @@
set(LLVM_LINK_COMPONENTS
Passes
AllTargetsCodeGens
AllTargetsDescs
AllTargetsInfos
TargetParser
)

View File

@ -16,6 +16,7 @@
#include "flang/Common/Fortran-features.h"
#include "flang/Common/OpenMP-features.h"
#include "flang/Common/Version.h"
#include "flang/Common/default-kinds.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/PFTBuilder.h"
@ -39,6 +40,7 @@
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/unparse-with-symbols.h"
#include "flang/Tools/CrossToolHelpers.h"
#include "flang/Tools/TargetSetup.h"
#include "flang/Version.inc"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/AsmState.h"
@ -50,6 +52,7 @@
#include "mlir/Pass/PassRegistry.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Passes/OptimizationLevel.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorOr.h"
@ -63,6 +66,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/TargetParser/Triple.h"
#include <memory>
//===----------------------------------------------------------------------===//
// Some basic command-line options
@ -202,6 +206,10 @@ static llvm::cl::opt<bool> enableCUDA("fcuda",
static llvm::cl::opt<bool> fixedForm("ffixed-form",
llvm::cl::desc("enable fixed form"),
llvm::cl::init(false));
static llvm::cl::opt<std::string>
targetTripleOverride("target",
llvm::cl::desc("Override host target triple"),
llvm::cl::init(""));
#define FLANG_EXCLUDE_CODEGEN
#include "flang/Tools/CLOptions.inc"
@ -221,6 +229,27 @@ static void registerAllPasses() {
fir::registerOptTransformPasses();
}
/// Create a target machine that is at least sufficient to get data-layout
/// information required by flang semantics and lowering. Note that it may not
/// contain all the CPU feature information to get optimized assembly generation
/// from LLVM IR. Drivers that needs to generate assembly from LLVM IR should
/// create a target machine according to their specific options.
static std::unique_ptr<llvm::TargetMachine>
createTargetMachine(llvm::StringRef targetTriple, std::string &error) {
std::string triple{targetTriple};
if (triple.empty())
triple = llvm::sys::getDefaultTargetTriple();
const llvm::Target *theTarget =
llvm::TargetRegistry::lookupTarget(triple, error);
if (!theTarget)
return nullptr;
return std::unique_ptr<llvm::TargetMachine>{
theTarget->createTargetMachine(triple, /*CPU=*/"",
/*Features=*/"", llvm::TargetOptions(),
/*Reloc::Model=*/std::nullopt)};
}
//===----------------------------------------------------------------------===//
// Translate Fortran input to FIR, a dialect of MLIR.
//===----------------------------------------------------------------------===//
@ -229,7 +258,8 @@ static mlir::LogicalResult convertFortranSourceToMLIR(
std::string path, Fortran::parser::Options options,
const ProgramName &programPrefix,
Fortran::semantics::SemanticsContext &semanticsContext,
const mlir::PassPipelineCLParser &passPipeline) {
const mlir::PassPipelineCLParser &passPipeline,
const llvm::TargetMachine &targetMachine) {
// prep for prescan and parse
Fortran::parser::Parsing parsing{semanticsContext.allCookedSources()};
@ -295,6 +325,8 @@ static mlir::LogicalResult convertFortranSourceToMLIR(
auto &defKinds = semanticsContext.defaultKinds();
fir::KindMapping kindMap(
&ctx, llvm::ArrayRef<fir::KindTy>{fir::fromDefaultKinds(defKinds)});
const llvm::DataLayout &dataLayout = targetMachine.createDataLayout();
std::string targetTriple = targetMachine.getTargetTriple().normalize();
// Use default lowering options for bbc.
Fortran::lower::LoweringOptions loweringOptions{};
loweringOptions.setPolymorphicTypeImpl(enablePolymorphic);
@ -302,8 +334,9 @@ static mlir::LogicalResult convertFortranSourceToMLIR(
loweringOptions.setLowerToHighLevelFIR(useHLFIR || emitHLFIR);
auto burnside = Fortran::lower::LoweringBridge::create(
ctx, semanticsContext, defKinds, semanticsContext.intrinsics(),
semanticsContext.targetCharacteristics(), parsing.allCooked(), "",
kindMap, loweringOptions, {}, semanticsContext.languageFeatures());
semanticsContext.targetCharacteristics(), parsing.allCooked(),
targetTriple, kindMap, loweringOptions, {},
semanticsContext.languageFeatures(), &dataLayout);
burnside.lower(parseTree, semanticsContext);
mlir::ModuleOp mlirModule = burnside.getModule();
if (enableOpenMP) {
@ -388,6 +421,8 @@ static mlir::LogicalResult convertFortranSourceToMLIR(
int main(int argc, char **argv) {
[[maybe_unused]] llvm::InitLLVM y(argc, argv);
llvm::InitializeAllTargets();
llvm::InitializeAllTargetMCs();
registerAllPasses();
mlir::registerMLIRContextCLOptions();
@ -453,17 +488,21 @@ int main(int argc, char **argv) {
.set_warnOnNonstandardUsage(warnStdViolation)
.set_warningsAreErrors(warnIsError);
llvm::Triple targetTriple{llvm::Triple(
llvm::Triple::normalize(llvm::sys::getDefaultTargetTriple()))};
// FIXME: Handle real(3) ?
if (targetTriple.getArch() != llvm::Triple::ArchType::x86 &&
targetTriple.getArch() != llvm::Triple::ArchType::x86_64) {
semanticsContext.targetCharacteristics().DisableType(
Fortran::common::TypeCategory::Real, /*kind=*/10);
std::string error;
// Create host target machine.
std::unique_ptr<llvm::TargetMachine> targetMachine =
createTargetMachine(targetTripleOverride, error);
if (!targetMachine) {
llvm::errs() << "failed to create target machine: " << error << "\n";
return mlir::failed(mlir::failure());
}
if (targetTriple.isPPC())
semanticsContext.targetCharacteristics().set_isPPC(true);
std::string compilerVersion = Fortran::common::getFlangToolFullVersion("bbc");
std::string compilerOptions = "";
Fortran::tools::setUpTargetCharacteristics(
semanticsContext.targetCharacteristics(), *targetMachine, compilerVersion,
compilerOptions);
return mlir::failed(convertFortranSourceToMLIR(
inputFilename, options, programPrefix, semanticsContext, passPipe));
return mlir::failed(
convertFortranSourceToMLIR(inputFilename, options, programPrefix,
semanticsContext, passPipe, *targetMachine));
}

View File

@ -51,7 +51,12 @@ if (NOT CMAKE_CROSSCOMPILING)
set(opts "")
if(${filename} STREQUAL "__ppc_intrinsics" OR
${filename} STREQUAL "mma")
if (PowerPC IN_LIST LLVM_TARGETS_TO_BUILD)
set(opts "--target=ppc64le")
else()
# Do not compile PPC module if the target is not available.
continue()
endif()
endif()
add_custom_command(OUTPUT ${base}.mod

View File

@ -14,6 +14,7 @@
#include "flang/Optimizer/CodeGen/CodeGen.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Optimizer/Support/InitFIR.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Transforms/Passes.h"
@ -61,9 +62,8 @@ static cl::opt<bool> codeGenLLVM(
#include "flang/Tools/CLOptions.inc"
static void printModuleBody(mlir::ModuleOp mod, raw_ostream &output) {
for (auto &op : *mod.getBody())
output << op << '\n';
static void printModule(mlir::ModuleOp mod, raw_ostream &output) {
output << mod << '\n';
}
// compile a .fir file
@ -104,6 +104,10 @@ compileFIR(const mlir::PassPipelineCLParser &passPipeline) {
fir::KindMapping kindMap{&context};
fir::setTargetTriple(*owningRef, targetTriple);
fir::setKindMapping(*owningRef, kindMap);
// tco is a testing tool, so it will happily use the target independent
// data layout if none is on the module.
fir::support::setMLIRDataLayoutFromAttributes(*owningRef,
/*allowDefaultLayout=*/true);
mlir::PassManager pm((*owningRef)->getName(),
mlir::OpPassManager::Nesting::Implicit);
pm.enableVerifier(/*verifyPasses=*/true);
@ -135,13 +139,13 @@ compileFIR(const mlir::PassPipelineCLParser &passPipeline) {
if (mlir::succeeded(pm.run(*owningRef))) {
// passes ran successfully, so keep the output
if ((emitFir || passPipeline.hasAnyOccurrences()) && !codeGenLLVM)
printModuleBody(*owningRef, out.os());
printModule(*owningRef, out.os());
out.keep();
return mlir::success();
}
// pass manager failed
printModuleBody(*owningRef, errs());
printModule(*owningRef, errs());
errs() << "\n\nFAILED: " << inputFilename << '\n';
return mlir::failure();
}

View File

@ -64,6 +64,13 @@ protected:
compInst.createDiagnostics();
invoc = std::make_shared<CompilerInvocation>();
// Set-up default target triple and initialize LLVM Targets so that the
// target data layout can be passed to the frontend.
invoc->getTargetOpts().triple =
llvm::Triple::normalize(llvm::sys::getDefaultTargetTriple());
llvm::InitializeAllTargets();
llvm::InitializeAllTargetMCs();
compInst.setInvocation(std::move(invoc));
compInst.getFrontendOpts().inputs.push_back(
FrontendInputFile(inputFilePath, Language::Fortran));
@ -174,13 +181,7 @@ TEST_F(FrontendActionTest, EmitLLVM) {
// Set-up the action kind.
compInst.getInvocation().getFrontendOpts().programAction = EmitLLVM;
// Set-up default target triple.
compInst.getInvocation().getTargetOpts().triple =
llvm::Triple::normalize(llvm::sys::getDefaultTargetTriple());
// Initialise LLVM backend
llvm::InitializeAllTargets();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmPrinters();
// Set-up the output stream. We are using output buffer wrapped as an output
@ -209,13 +210,7 @@ TEST_F(FrontendActionTest, EmitAsm) {
// Set-up the action kind.
compInst.getInvocation().getFrontendOpts().programAction = EmitAssembly;
// Set-up default target triple.
compInst.getInvocation().getTargetOpts().triple =
llvm::Triple::normalize(llvm::sys::getDefaultTargetTriple());
// Initialise LLVM backend
llvm::InitializeAllTargets();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmPrinters();
// Set-up the output stream. We are using output buffer wrapped as an output