[mlir][linalg][elementwise] Fold transpose into new elementwise (#130207)

Fold transpose into new elementwise Op which has affine-map attached.
Will add broadcast folding in next diff.
This commit is contained in:
Javed Absar 2025-03-12 23:04:44 +00:00 committed by GitHub
parent be0215d745
commit ecf4d995f6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 154 additions and 1 deletions

View File

@ -601,7 +601,18 @@ def ElementwiseOp : LinalgStructuredBase_Op<"elementwise", [
[{
buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
attributes, ElementwiseOp::getRegionBuilder());
}]>
}]>,
OpBuilder<(ins "ValueRange":$inputs, "ValueRange":$outputs,
"ElementwiseKindAttr":$kind,
"ArrayAttr":$indexingMaps,
CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
[{
$_state.addAttribute("kind", kind);
$_state.addAttribute("indexing_maps", indexingMaps);
buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
attributes, ElementwiseOp::getRegionBuilder());
}]>
];
let hasCustomAssemblyFormat = 1;

View File

@ -99,6 +99,11 @@ def LinalgSpecializeGenericOpsPass : Pass<"linalg-specialize-generic-ops"> {
let dependentDialects = ["linalg::LinalgDialect"];
}
def LinalgFoldIntoElementwisePass : Pass<"linalg-fold-into-elementwise"> {
let summary = "Fold transform, broadcast and other ops into elementwise";
let dependentDialects = ["linalg::LinalgDialect"];
}
def LinalgDetensorizePass : InterfacePass<"linalg-detensorize", "FunctionOpInterface"> {
let summary = "Detensorize linalg ops";
let dependentDialects = [];

View File

@ -1710,6 +1710,10 @@ void populateLinalgNamedOpsGeneralizationPatterns(RewritePatternSet &patterns);
void populateLinalgGenericOpsSpecializationPatterns(
RewritePatternSet &patterns);
/// Populates `patterns` with patterns that fold operations like
/// `linalg.transform` into elementwise op map.
void populateLinalgFoldIntoElementwisePatterns(RewritePatternSet &patterns);
/// Linalg decompose convolutions patterns
/// Populates patterns to decompose high-D convolution ops into low-D ones.

View File

@ -14,6 +14,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
EliminateEmptyTensors.cpp
EraseUnusedOperandsAndResults.cpp
FoldAddIntoDest.cpp
FoldIntoElementwise.cpp
FusePadOpWithLinalgProducer.cpp
Fusion.cpp
Generalization.cpp

View File

@ -0,0 +1,89 @@
//===- FoldIntoElementwise.cpp - Fold Ops into elementwise if possible ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements folding ops such as transpose and broadcast into the
// affine maps of the elementwise op.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
namespace mlir {
#define GEN_PASS_DEF_LINALGFOLDINTOELEMENTWISEPASS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::linalg;
#define DEBUG_TYPE "linalg-fold-into-elementwise"
namespace {
struct FoldTransposePattern : public OpRewritePattern<ElementwiseOp> {
using OpRewritePattern<ElementwiseOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ElementwiseOp op,
PatternRewriter &rewriter) const override {
bool changed = false;
SmallVector<Value> newIns;
SmallVector<AffineMap> newMaps;
for (OpOperand *operand : op.getDpsInputOperands()) {
AffineMap map = op.getMatchingIndexingMap(operand);
auto transposeOp = operand->get().getDefiningOp<TransposeOp>();
if (!map.isIdentity() || !transposeOp) {
// push in original operand and its map.
newIns.push_back(operand->get());
newMaps.push_back(map);
continue;
}
newIns.push_back(transposeOp.getInput());
// push in transposeOp's inverse permutation map.
newMaps.push_back(transposeOp.getMatchingIndexingMap(
transposeOp.getDpsInputOperand(0)));
changed = true;
}
if (!changed)
return failure();
newMaps.push_back(op.getIndexingMapsArray().back());
rewriter.replaceOpWithNewOp<ElementwiseOp>(
op, newIns, op.getDpsInits()[0], op.getKindAttr(),
rewriter.getAffineMapArrayAttr(newMaps));
return success();
}
};
struct LinalgFoldIntoElementwisePass
: public impl::LinalgFoldIntoElementwisePassBase<
LinalgFoldIntoElementwisePass> {
using impl::LinalgFoldIntoElementwisePassBase<
LinalgFoldIntoElementwisePass>::LinalgFoldIntoElementwisePassBase;
void runOnOperation() override {
llvm::outs() << "Hellow from fold into elemenwise \n";
Operation *op = getOperation();
RewritePatternSet patterns(op->getContext());
populateLinalgFoldIntoElementwisePatterns(patterns);
if (failed(applyPatternsGreedily(op, std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
void mlir::linalg::populateLinalgFoldIntoElementwisePatterns(
RewritePatternSet &patterns) {
patterns.add<FoldTransposePattern>(patterns.getContext());
}

View File

@ -0,0 +1,43 @@
// RUN: mlir-opt %s -linalg-fold-into-elementwise -split-input-file | FileCheck %s
// CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[TRANSPOSED:.+]] = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
//
// CHECK: func.func @unary_transpose(%[[A:.+]]: tensor<16x8x32xf32>, %[[B:.+]]: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> {
// CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<exp>
// CHECK-SAME: indexing_maps = [#[[TRANSPOSED]], #[[IDENTITY]]]
// CHECK-SAME: ins(%[[A]] : tensor<16x8x32xf32>) outs(%[[B]] : tensor<8x16x32xf32>) -> tensor<8x16x32xf32>
// CHECK-NEXT: return %[[RES]] : tensor<8x16x32xf32>
//
func.func @unary_transpose(%A : tensor<16x8x32xf32>, %B: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> {
%empty = tensor.empty() : tensor<8x16x32xf32>
%transposed_A = linalg.transpose ins(%A : tensor<16x8x32xf32>) outs(%empty : tensor<8x16x32xf32>) permutation = [1, 0, 2]
%result = linalg.elementwise kind=#linalg.elementwise_kind<exp>
ins(%transposed_A : tensor<8x16x32xf32>) outs(%B: tensor<8x16x32xf32>) -> tensor<8x16x32xf32>
return %result : tensor<8x16x32xf32>
}
// -----
// CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[TRANSPOSED:.+]] = affine_map<(d0, d1) -> (d1, d0)>
//
// CHECK: func.func @binary_transposed(%[[A:.+]]: tensor<?x?xf32>, %[[B:.+]]: tensor<?x?xf32>, %[[C:.+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
// CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<add>
// CHECK-SAME: indexing_maps = [#[[IDENTITY]], #[[TRANSPOSED]], #[[IDENTITY]]]
// CHECK-SAME: ins(%[[A]], %[[B]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[C]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK-NEXT: return %[[RES]] : tensor<?x?xf32>
//
func.func @binary_transposed(%A : tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>) -> tensor<?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%dim0 = tensor.dim %A, %c0 : tensor<?x?xf32>
%dim1 = tensor.dim %A, %c1 : tensor<?x?xf32>
%empty = tensor.empty(%dim1, %dim0) : tensor<?x?xf32>
%transposed_B = linalg.transpose ins(%B : tensor<?x?xf32>) outs(%empty : tensor<?x?xf32>) permutation = [1, 0]
%result = linalg.elementwise kind=#linalg.elementwise_kind<add>
ins(%A, %transposed_B : tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>) -> tensor<?x?xf32>
return %result : tensor<?x?xf32>
}