[mlir][linalg][elementwise] Fold transpose into new elementwise (#130207)
Fold transpose into new elementwise Op which has affine-map attached. Will add broadcast folding in next diff.
This commit is contained in:
parent
be0215d745
commit
ecf4d995f6
@ -601,7 +601,18 @@ def ElementwiseOp : LinalgStructuredBase_Op<"elementwise", [
|
||||
[{
|
||||
buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
|
||||
attributes, ElementwiseOp::getRegionBuilder());
|
||||
}]>
|
||||
}]>,
|
||||
|
||||
OpBuilder<(ins "ValueRange":$inputs, "ValueRange":$outputs,
|
||||
"ElementwiseKindAttr":$kind,
|
||||
"ArrayAttr":$indexingMaps,
|
||||
CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
|
||||
[{
|
||||
$_state.addAttribute("kind", kind);
|
||||
$_state.addAttribute("indexing_maps", indexingMaps);
|
||||
buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
|
||||
attributes, ElementwiseOp::getRegionBuilder());
|
||||
}]>
|
||||
];
|
||||
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
|
@ -99,6 +99,11 @@ def LinalgSpecializeGenericOpsPass : Pass<"linalg-specialize-generic-ops"> {
|
||||
let dependentDialects = ["linalg::LinalgDialect"];
|
||||
}
|
||||
|
||||
def LinalgFoldIntoElementwisePass : Pass<"linalg-fold-into-elementwise"> {
|
||||
let summary = "Fold transform, broadcast and other ops into elementwise";
|
||||
let dependentDialects = ["linalg::LinalgDialect"];
|
||||
}
|
||||
|
||||
def LinalgDetensorizePass : InterfacePass<"linalg-detensorize", "FunctionOpInterface"> {
|
||||
let summary = "Detensorize linalg ops";
|
||||
let dependentDialects = [];
|
||||
|
@ -1710,6 +1710,10 @@ void populateLinalgNamedOpsGeneralizationPatterns(RewritePatternSet &patterns);
|
||||
void populateLinalgGenericOpsSpecializationPatterns(
|
||||
RewritePatternSet &patterns);
|
||||
|
||||
/// Populates `patterns` with patterns that fold operations like
|
||||
/// `linalg.transform` into elementwise op map.
|
||||
void populateLinalgFoldIntoElementwisePatterns(RewritePatternSet &patterns);
|
||||
|
||||
/// Linalg decompose convolutions patterns
|
||||
|
||||
/// Populates patterns to decompose high-D convolution ops into low-D ones.
|
||||
|
@ -14,6 +14,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
|
||||
EliminateEmptyTensors.cpp
|
||||
EraseUnusedOperandsAndResults.cpp
|
||||
FoldAddIntoDest.cpp
|
||||
FoldIntoElementwise.cpp
|
||||
FusePadOpWithLinalgProducer.cpp
|
||||
Fusion.cpp
|
||||
Generalization.cpp
|
||||
|
89
mlir/lib/Dialect/Linalg/Transforms/FoldIntoElementwise.cpp
Normal file
89
mlir/lib/Dialect/Linalg/Transforms/FoldIntoElementwise.cpp
Normal file
@ -0,0 +1,89 @@
|
||||
//===- FoldIntoElementwise.cpp - Fold Ops into elementwise if possible ---===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements folding ops such as transpose and broadcast into the
|
||||
// affine maps of the elementwise op.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
||||
#include "mlir/Dialect/Linalg/Passes.h"
|
||||
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
||||
#include "mlir/IR/PatternMatch.h"
|
||||
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/TypeSwitch.h"
|
||||
|
||||
namespace mlir {
|
||||
#define GEN_PASS_DEF_LINALGFOLDINTOELEMENTWISEPASS
|
||||
#include "mlir/Dialect/Linalg/Passes.h.inc"
|
||||
} // namespace mlir
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::linalg;
|
||||
|
||||
#define DEBUG_TYPE "linalg-fold-into-elementwise"
|
||||
|
||||
namespace {
|
||||
struct FoldTransposePattern : public OpRewritePattern<ElementwiseOp> {
|
||||
using OpRewritePattern<ElementwiseOp>::OpRewritePattern;
|
||||
|
||||
LogicalResult matchAndRewrite(ElementwiseOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
bool changed = false;
|
||||
SmallVector<Value> newIns;
|
||||
SmallVector<AffineMap> newMaps;
|
||||
for (OpOperand *operand : op.getDpsInputOperands()) {
|
||||
AffineMap map = op.getMatchingIndexingMap(operand);
|
||||
auto transposeOp = operand->get().getDefiningOp<TransposeOp>();
|
||||
|
||||
if (!map.isIdentity() || !transposeOp) {
|
||||
// push in original operand and its map.
|
||||
newIns.push_back(operand->get());
|
||||
newMaps.push_back(map);
|
||||
continue;
|
||||
}
|
||||
newIns.push_back(transposeOp.getInput());
|
||||
// push in transposeOp's inverse permutation map.
|
||||
newMaps.push_back(transposeOp.getMatchingIndexingMap(
|
||||
transposeOp.getDpsInputOperand(0)));
|
||||
changed = true;
|
||||
}
|
||||
if (!changed)
|
||||
return failure();
|
||||
newMaps.push_back(op.getIndexingMapsArray().back());
|
||||
|
||||
rewriter.replaceOpWithNewOp<ElementwiseOp>(
|
||||
op, newIns, op.getDpsInits()[0], op.getKindAttr(),
|
||||
rewriter.getAffineMapArrayAttr(newMaps));
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
struct LinalgFoldIntoElementwisePass
|
||||
: public impl::LinalgFoldIntoElementwisePassBase<
|
||||
LinalgFoldIntoElementwisePass> {
|
||||
using impl::LinalgFoldIntoElementwisePassBase<
|
||||
LinalgFoldIntoElementwisePass>::LinalgFoldIntoElementwisePassBase;
|
||||
|
||||
void runOnOperation() override {
|
||||
llvm::outs() << "Hellow from fold into elemenwise \n";
|
||||
Operation *op = getOperation();
|
||||
RewritePatternSet patterns(op->getContext());
|
||||
populateLinalgFoldIntoElementwisePatterns(patterns);
|
||||
|
||||
if (failed(applyPatternsGreedily(op, std::move(patterns))))
|
||||
return signalPassFailure();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
void mlir::linalg::populateLinalgFoldIntoElementwisePatterns(
|
||||
RewritePatternSet &patterns) {
|
||||
patterns.add<FoldTransposePattern>(patterns.getContext());
|
||||
}
|
43
mlir/test/Dialect/Linalg/elementwise/fold.mlir
Normal file
43
mlir/test/Dialect/Linalg/elementwise/fold.mlir
Normal file
@ -0,0 +1,43 @@
|
||||
// RUN: mlir-opt %s -linalg-fold-into-elementwise -split-input-file | FileCheck %s
|
||||
|
||||
// CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
|
||||
// CHECK-DAG: #[[TRANSPOSED:.+]] = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
|
||||
//
|
||||
// CHECK: func.func @unary_transpose(%[[A:.+]]: tensor<16x8x32xf32>, %[[B:.+]]: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> {
|
||||
// CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<exp>
|
||||
// CHECK-SAME: indexing_maps = [#[[TRANSPOSED]], #[[IDENTITY]]]
|
||||
// CHECK-SAME: ins(%[[A]] : tensor<16x8x32xf32>) outs(%[[B]] : tensor<8x16x32xf32>) -> tensor<8x16x32xf32>
|
||||
// CHECK-NEXT: return %[[RES]] : tensor<8x16x32xf32>
|
||||
//
|
||||
func.func @unary_transpose(%A : tensor<16x8x32xf32>, %B: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> {
|
||||
%empty = tensor.empty() : tensor<8x16x32xf32>
|
||||
%transposed_A = linalg.transpose ins(%A : tensor<16x8x32xf32>) outs(%empty : tensor<8x16x32xf32>) permutation = [1, 0, 2]
|
||||
%result = linalg.elementwise kind=#linalg.elementwise_kind<exp>
|
||||
ins(%transposed_A : tensor<8x16x32xf32>) outs(%B: tensor<8x16x32xf32>) -> tensor<8x16x32xf32>
|
||||
return %result : tensor<8x16x32xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1) -> (d0, d1)>
|
||||
// CHECK-DAG: #[[TRANSPOSED:.+]] = affine_map<(d0, d1) -> (d1, d0)>
|
||||
//
|
||||
// CHECK: func.func @binary_transposed(%[[A:.+]]: tensor<?x?xf32>, %[[B:.+]]: tensor<?x?xf32>, %[[C:.+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
|
||||
// CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<add>
|
||||
// CHECK-SAME: indexing_maps = [#[[IDENTITY]], #[[TRANSPOSED]], #[[IDENTITY]]]
|
||||
// CHECK-SAME: ins(%[[A]], %[[B]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[C]] : tensor<?x?xf32>) -> tensor<?x?xf32>
|
||||
// CHECK-NEXT: return %[[RES]] : tensor<?x?xf32>
|
||||
//
|
||||
func.func @binary_transposed(%A : tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>) -> tensor<?x?xf32> {
|
||||
%c0 = arith.constant 0 : index
|
||||
%c1 = arith.constant 1 : index
|
||||
%dim0 = tensor.dim %A, %c0 : tensor<?x?xf32>
|
||||
%dim1 = tensor.dim %A, %c1 : tensor<?x?xf32>
|
||||
|
||||
%empty = tensor.empty(%dim1, %dim0) : tensor<?x?xf32>
|
||||
%transposed_B = linalg.transpose ins(%B : tensor<?x?xf32>) outs(%empty : tensor<?x?xf32>) permutation = [1, 0]
|
||||
%result = linalg.elementwise kind=#linalg.elementwise_kind<add>
|
||||
ins(%A, %transposed_B : tensor<?x?xf32>, tensor<?x?xf32>)
|
||||
outs(%C: tensor<?x?xf32>) -> tensor<?x?xf32>
|
||||
return %result : tensor<?x?xf32>
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user