Make core BOLT functionality more friendly to being used as a
library instead of in our standalone driver llvm-bolt. To
accomplish this, we augment BinaryContext with journaling streams
that are to be used by most BOLT code whenever something needs to
be logged to the screen. Users of the library can decide if logs
should be printed to a file, no file or to the screen, as
before. To illustrate this, this patch adds a new option
`--log-file` that allows the user to redirect BOLT logging to a
file on disk or completely hide it by using
`--log-file=/dev/null`. Future BOLT code should now use
`BinaryContext::outs()` for printing important messages instead of
`llvm::outs()`. A new test log.test enforces this by verifying that
no strings are print to screen once the `--log-file` option is
used.
In previous patches we also added a new BOLTError class to report
common and fatal errors, so code shouldn't call exit(1) now. To
easily handle problems as before (by quitting with exit(1)),
callers can now use
`BinaryContext::logBOLTErrorsAndQuitOnFatal(Error)` whenever code
needs to deal with BOLT errors. To test this, we have fatal.s
that checks we are correctly quitting and printing a fatal error
to the screen.
Because this is a significant change by itself, not all code was
yet ported. Code from Profiler libs (DataAggregator and friends)
still print errors directly to screen.
Co-authored-by: Rafael Auler <rafaelauler@fb.com>
Test Plan: NFC
Closes https://github.com/llvm/llvm-project/issues/63097
Before merging please make sure the change to
bolt/include/bolt/Passes/StokeInfo.h is correct.
bolt/include/bolt/Passes/StokeInfo.h
```diff
// This Pass solves the two major problems to use the Stoke program without
- // proting its code:
+ // probing its code:
```
I'm still not happy about the awkward wording in this comment.
bolt/include/bolt/Passes/FixRelaxationPass.h
```
$ ed -s bolt/include/bolt/Passes/FixRelaxationPass.h <<<'9,12p'
// This file declares the FixRelaxations class, which locates instructions with
// wrong targets and fixes them. Such problems usually occures when linker
// relaxes (changes) instructions, but doesn't fix relocations types properly
// for them.
$
```
bolt/docs/doxygen.cfg.in
bolt/include/bolt/Core/BinaryContext.h
bolt/include/bolt/Core/BinaryFunction.h
bolt/include/bolt/Core/BinarySection.h
bolt/include/bolt/Core/DebugData.h
bolt/include/bolt/Core/DynoStats.h
bolt/include/bolt/Core/Exceptions.h
bolt/include/bolt/Core/MCPlusBuilder.h
bolt/include/bolt/Core/Relocation.h
bolt/include/bolt/Passes/FixRelaxationPass.h
bolt/include/bolt/Passes/InstrumentationSummary.h
bolt/include/bolt/Passes/ReorderAlgorithm.h
bolt/include/bolt/Passes/StackReachingUses.h
bolt/include/bolt/Passes/StokeInfo.h
bolt/include/bolt/Passes/TailDuplication.h
bolt/include/bolt/Profile/DataAggregator.h
bolt/include/bolt/Profile/DataReader.h
bolt/lib/Core/BinaryContext.cpp
bolt/lib/Core/BinarySection.cpp
bolt/lib/Core/DebugData.cpp
bolt/lib/Core/DynoStats.cpp
bolt/lib/Core/Relocation.cpp
bolt/lib/Passes/Instrumentation.cpp
bolt/lib/Passes/JTFootprintReduction.cpp
bolt/lib/Passes/ReorderData.cpp
bolt/lib/Passes/RetpolineInsertion.cpp
bolt/lib/Passes/ShrinkWrapping.cpp
bolt/lib/Passes/TailDuplication.cpp
bolt/lib/Rewrite/BoltDiff.cpp
bolt/lib/Rewrite/DWARFRewriter.cpp
bolt/lib/Rewrite/RewriteInstance.cpp
bolt/lib/Utils/CommandLineOpts.cpp
bolt/runtime/instr.cpp
bolt/test/AArch64/got-ld64-relaxation.test
bolt/test/AArch64/unmarked-data.test
bolt/test/X86/Inputs/dwarf5-cu-no-debug-addr-helper.s
bolt/test/X86/Inputs/linenumber.cpp
bolt/test/X86/double-jump.test
bolt/test/X86/dwarf5-call-pc-function-null-check.test
bolt/test/X86/dwarf5-split-dwarf4-monolithic.test
bolt/test/X86/dynrelocs.s
bolt/test/X86/fallthrough-to-noop.test
bolt/test/X86/tail-duplication-cache.s
bolt/test/runtime/X86/instrumentation-ind-calls.s
As discussed in D159266, for some instructions it's impossible to know
statically if they will load/store (e.g., predicated instructions).
Therefore, mayLoad/mayStore are more appropriate names.
Use llvm::reverse instead of `for (auto I = rbegin(), E = rend(); I != E; ++I)`
Reviewed By: #bolt, rafauler
Differential Revision: https://reviews.llvm.org/D140516
A const-qualified reference to function layout allows accessing
non-const qualified basic blocks on a const-qualified function. This
patch adds or removes const-qualifiers where necessary to indicate where
basic blocks are used in a non-const manner.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132049
A const-qualified reference to function layout allows accessing
non-const qualified basic blocks on a const-qualified function. This
patch adds or removes const-qualifiers where necessary to indicate where
basic blocks are used in a non-const manner.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132049
This patch adds a dedicated class to keep track of each function's
layout. It also lays the groundwork for splitting functions into
multiple fragments (as opposed to a strict hot/cold split).
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D129518
Summary:
Fix according to Coding Standards doc, section Don't Use
Braces on Simple Single-Statement Bodies of if/else/loop Statements.
This set of changes applies to lib Core only.
(cherry picked from FBD33240028)
Summary:
Moves source files into separate components, and make explicit
component dependency on each other, so LLVM build system knows how to
build BOLT in BUILD_SHARED_LIBS=ON.
Please use the -c merge.renamelimit=230 git option when rebasing your
work on top of this change.
To achieve this, we create a new library to hold core IR files (most
classes beginning with Binary in their names), a new library to hold
Utils, some command line options shared across both RewriteInstance
and core IR files, a new library called Rewrite to hold most classes
concerned with running top-level functions coordinating the binary
rewriting process, and a new library called Profile to hold classes
dealing with profile reading and writing.
To remove the dependency from BinaryContext into X86-specific classes,
we do some refactoring on the BinaryContext constructor to receive a
reference to the specific backend directly from RewriteInstance. Then,
the dependency on X86 or AArch64-specific classes is transfered to the
Rewrite library. We can't have the Core library depend on targets
because targets depend on Core (which would create a cycle).
Files implementing the entry point of a tool are transferred to the
tools/ folder. All header files are transferred to the include/
folder. The src/ folder was renamed to lib/.
(cherry picked from FBD32746834)