References to headings need to be preceded with a slash. Also,
references to headings on the same page do not need to contain the name
of the document (omitting the document name means if the name changes
the links will still be valid).
I double checked the links by building [the
website](https://github.com/llvm/mlir-www):
```shell
./mlir-www-helper.sh --install-docs ../llvm-project website
cd website && hugo serve
```
It seems the `Traits.md` file was turned into `Traits/_index.md` in
https://reviews.llvm.org/D153291, causing links to `Traits.md` to no
longer work (instead, `Traits` needs to be used).
`bufferization.materialize_in_destination` should be used instead. Both
ops bufferize to a memcpy. This change also conceptually cleans up the
memref dialect a bit: the memref dialect no longer contains ops that
operate on tensor values.
According to the EBNF syntax described in the 'Common syntax' chapter,
literal characters should be surrounded by backticks (`). However, in
some sections of this document, single quotes (') are used instead.
So, fix them.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D150067
This new features enabled to dedicate custom storage inline within operations.
This storage can be used as an alternative to attributes to store data that is
specific to an operation. Attribute can also be stored inside the properties
storage if desired, but any kind of data can be present as well. This offers
a way to store and mutate data without uniquing in the Context like Attribute.
See the OpPropertiesTest.cpp for an example where a struct with a
std::vector<> is attached to an operation and mutated in-place:
struct TestProperties {
int a = -1;
float b = -1.;
std::vector<int64_t> array = {-33};
};
More complex scheme (including reference-counting) are also possible.
The only constraint to enable storing a C++ object as "properties" on an
operation is to implement three functions:
- convert from the candidate object to an Attribute
- convert from the Attribute to the candidate object
- hash the object
Optional the parsing and printing can also be customized with 2 extra
functions.
A new options is introduced to ODS to allow dialects to specify:
let usePropertiesForAttributes = 1;
When set to true, the inherent attributes for all the ops in this dialect
will be using properties instead of being stored alongside discardable
attributes.
The TestDialect showcases this feature.
Another change is that we introduce new APIs on the Operation class
to access separately the inherent attributes from the discardable ones.
We envision deprecating and removing the `getAttr()`, `getAttrsDictionary()`,
and other similar method which don't make the distinction explicit, leading
to an entirely separate namespace for discardable attributes.
Recommit d572cd1b067f after fixing python bindings build.
Differential Revision: https://reviews.llvm.org/D141742
This new features enabled to dedicate custom storage inline within operations.
This storage can be used as an alternative to attributes to store data that is
specific to an operation. Attribute can also be stored inside the properties
storage if desired, but any kind of data can be present as well. This offers
a way to store and mutate data without uniquing in the Context like Attribute.
See the OpPropertiesTest.cpp for an example where a struct with a
std::vector<> is attached to an operation and mutated in-place:
struct TestProperties {
int a = -1;
float b = -1.;
std::vector<int64_t> array = {-33};
};
More complex scheme (including reference-counting) are also possible.
The only constraint to enable storing a C++ object as "properties" on an
operation is to implement three functions:
- convert from the candidate object to an Attribute
- convert from the Attribute to the candidate object
- hash the object
Optional the parsing and printing can also be customized with 2 extra
functions.
A new options is introduced to ODS to allow dialects to specify:
let usePropertiesForAttributes = 1;
When set to true, the inherent attributes for all the ops in this dialect
will be using properties instead of being stored alongside discardable
attributes.
The TestDialect showcases this feature.
Another change is that we introduce new APIs on the Operation class
to access separately the inherent attributes from the discardable ones.
We envision deprecating and removing the `getAttr()`, `getAttrsDictionary()`,
and other similar method which don't make the distinction explicit, leading
to an entirely separate namespace for discardable attributes.
Differential Revision: https://reviews.llvm.org/D141742
A dialect can opt-in to handle versioning through the
`BytecodeDialectInterface`. Few hooks are exposed to the dialect to allow
managing a version encoded into the bytecode file. The version is loaded
lazily and allows to retrieve the version information while parsing the input
IR, and gives an opportunity to each dialect for which a version is present
to perform IR upgrades post-parsing through the `upgradeFromVersion` method.
Custom Attribute and Type encodings can also be upgraded according to the
dialect version using readAttribute and readType methods.
There is no restriction on what kind of information a dialect is allowed to
encode to model its versioning. Currently, versioning is supported only for
bytecode formats.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D143647
This moves the documentation for defining dialects, attributes/types,
and operations into a new `DefiningDialects` folder. This helps to
keep the documentation grouped together, making it easier to find
related documentation.
Differential Revision: https://reviews.llvm.org/D137594
This commit refactors the syntax of "ugly" attribute/type formats to not use
strings for wrapping. This means that moving forward attirbutes and type formats
will always need to be in some recognizable form, i.e. if they use incompatible
characters they will need to manually wrap those in a string, the framework will
no longer do it automatically.
This has the benefit of greatly simplifying how parsing attributes/types work, given
that we currently rely on some extremely complicated nested parser logic which is
quite problematic for a myriad of reasons; unecessary complexity(we create a nested
source manager/lexer/etc.), diagnostic locations can be off/wrong given string escaping,
etc.
Differential Revision: https://reviews.llvm.org/D118505
This was carry over from LLVM IR where the alias definition can
be ambiguous, but MLIR type aliases have no such problems.
Having the `type` keyword is superfluous and doesn't add anything.
This commit drops it, which also nicely aligns with the syntax for
attribute aliases (which doesn't have a keyword).
Differential Revision: https://reviews.llvm.org/D125501
tree-sitter grammar file that tries to closely matches LangRef (it could use
some tweaking and cleanup, but kept fairly basic). Also updated LangRef in
places where found some issues while doing the nearly direct transcription.
This only adds a grammar file, not all the other parts (npm etc) that
accompanies it. Those I'll propose for separate repo like we do for vscode
extension.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D124352
The current documentation is super old, crusty, and at times wrong. This commit
rewrites the documentation to focus on the TableGen declarative definition,
expounds on various components, and moves the doc out of Tutorials/ and into
a new top level `AttributesAndTypes.md` doc. As part of this, the AttrDef/TypeDef
documentation in OpDefinitions.md is removed.
Differential Revision: https://reviews.llvm.org/D120011
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
The MLIR parser allows regions to have an unnamed entry block.
Make this explicit in the language grammar.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D119950
The LangRef currently lacks a top-level production, leaving the productions attribute-alias-def and type-alias-defunused. Clarify the situation by declaring what is to be parsed by an MLIR parser at the toplevel.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D117668
[NFC] This patch fixes URLs containing "master". Old URLs were either broken or
redirecting to the new URL.
Reviewed By: #libc, ldionne, mehdi_amini
Differential Revision: https://reviews.llvm.org/D113186
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
This is the fourth and final patch in a series of patches fixing markdown links and references inside the mlir documentation. This patch combined with the other three should fix almost every broken link on mlir.llvm.org as far as I can tell.
This patch in particular addresses all Markdown files in the top level docs directory.
Differential Revision: https://reviews.llvm.org/D103032
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
Now that all of the builtin dialect is generated from ODS, its documentation in LangRef can be split out and replaced with references to Dialects/Builtin.md. LangRef is quite crusty right now and should really have a full cleanup done in a followup.
Differential Revision: https://reviews.llvm.org/D98562
Based on the following discussion:
https://llvm.discourse.group/t/rfc-memref-memory-shape-as-attribute/2229
The goal of the change is to make memory space property to have more
expressive representation, rather then "magic" integer values.
It will allow to have more clean ASM form:
```
gpu.func @test(%arg0: memref<100xf32, "workgroup">)
// instead of
gpu.func @test(%arg0: memref<100xf32, 3>)
```
Explanation for `Attribute` choice instead of plain `string`:
* `Attribute` classes allow to use more type safe API based on RTTI.
* `Attribute` classes provides faster comparison operator based on
pointer comparison in contrast to generic string comparison.
* `Attribute` allows to store more complex things, like structs or dictionaries.
It will allows to have more complex memory space hierarchy.
This commit preserve old integer-based API and implements it on top
of the new one.
Depends on D97476
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96145
After discussion, it seems like we want to go with
"inherent/discardable". These seem to best capture the relationship with
the op semantics and don't conflict with other terms.
Please let me know your preferences. Some of the other contenders are:
```
"intrinsic" side | "annotation" side
-----------------+------------------
characteristic | annotation
closed | open
definitional | advisory
essential | discardable
expected | unexpected
innate | acquired
internal | external
intrinsic | extrinsic
known | unknown
local | global
native | foreign
inherent | acquired
```
Rationale:
- discardable: good. discourages use for stable data.
- inherent: good
- annotation: redundant and doesn't convey difference
- intrinsic: confusable with "compiler intrinsics".
- definitional: too much of a mounthful
- extrinsic: too exotic of a word and hard to say
- acquired: doesn't convey the relationship to the semantics
- internal/external: not immediately obvious: what is internal to what?
- innate: similar to intrinsic but worse
- acquired: we don't typically think of an op as "acquiring" things
- known/unknown: by who?
- local/global: to what?
- native/foreign: to where?
- advisory: confusing distinction: is the attribute itself advisory or
is the information it provides advisory?
- essential: an intrinsic attribute need not be present.
- expected: same issue as essential
- unexpected: by who/what?
- closed/open: whether the set is open or closed doesn't seem essential
to the attribute being intrinsic. Also, in theory an op can have an
unbounded set of intrinsic attributes (e.g. `arg<N>` for func).
- characteristic: unless you have a math background this probably
doesn't make as much sense
Differential Revision: https://reviews.llvm.org/D96093
- attribute-dict production is redundant with dictionary-attribute
- definitions of attribute aliases were part of the same production as
uses of attribute aliases
- `std.dim` now accepts the dimension number as an operand, so the
example is out of date. Use the predicate of std.cmpi as a better
example.
Differential Revision: https://reviews.llvm.org/D96076
Based on the comments in lib/Parser/TypeParser.cpp on the
parseMemRefType and parseTensorType functions.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D94262
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
Many pages have had their titles renamed over time,
causing broken links to spread throughout the documentation.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D92093
- Eliminate incorrect |
- Eliminate memspace0 as the memory spaces currently are integer literals and memory
space 0 is not explicitly printed.
Differential Revision: https://reviews.llvm.org/D88171
Missing line breaks in the example under `Codegen of Unranked Memref` section.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D84484