This patch uses the previously build infrastructure to parse multiple
FDE entries into a single unwind plan. There is one catch though: we
parse only one FDE entry per unwind range. This is not fully correct
because lldb coalesces adjecant address ranges, which means that
something that originally looked like two separate address ranges (and
two FDE entries) may get merged into one because if the linker decides
to put the two ranges next to each other. In this case, we will ignore
the second FDE entry.
It would be more correct to try to parse another entry when the one we
found turns out to be short, but I'm not doing this (yet), because:
- this is how we've done things so far (although, monolithic functions
are unlikely to have more than one FDE entry)
- in cases where we don't have debug info or (full) symbol tables, we
can end up with "symbols" which appear to span many megabytes
(potentially, the whole module). If we tried to fill short FDE entries,
we could end up parsing the entire eh_frame section in a single go. In a
way, this would be more correct, but it would also probably be very
slow.
I haven't quite decided what to do about this case yet, though it's not
particularly likely to happen in the "production" cases as typically the
functions are split into two parts (hot/cold) instead of one part per
basic block.
The main change here is that we're now able to correctly look up plans
for these functions. Previously, due to caching, we could end up with
one entry covering most of the address space (because part of the
function was at the beginning and one at the end). Now, we can correctly
recognise that the part in between does not belong to that function, and
we can create a different FuncUnwinders instance for it. It doesn't help
the discontinuous function much (its plan will still be garbled), but
we can at least properly unwind out of the simple functions in between.
Fixing the unwind plans for discontinuous functions requires handling
each unwind source specially, and this setup allows us to make the
transition incrementally.
PR #86603 broke unwinding in for unwind info added via "target symbols
add". #86770 attempted to fix this, but the fix was only partial -- it
accepted new sources of unwind information, but didn't take into account
that the symbol file can alter what lldb percieves as function
boundaries.
A stripped file will not contain information about private
(non-exported) symbols, which will make the public symbols appear very
large. If lldb tries to unwind from such a function before symbols are
added, then the cached unwind plan will prevent new (correct) unwind
plans from being created.
target-symbols-add-unwind.test might have caught this, were it not for
the fact that the "image show-unwind" command does *not* use cached
unwind information (it recomputes it from scratch).
The changes in this patch come in three pieces:
- Clear cached unwind plans when adding symbols. Since the symbol
boundaries can change, we cannot trust anything we've computed
previously.
- Add a flag to "image show-unwind" to display the cached unwind
information (mainly for the use in the test, but I think it's also
generally useful).
- Rewrite the test to better and more reliably simulate the real-world
scenario: I've swapped the running process for a core (minidump) file so
it can run anywhere; used the caching version of the show-unwind
command; and swapped C for assembly to better control the placement of
symbols
This reverts commit a89e01634fe2e6ce0b967ead24280b6693b523dc.
This is being reverted because it broke the test:
Unwind/trap_frame_sym_ctx.test
/Users/ec2-user/jenkins/workspace/llvm.org/lldb-cmake/llvm-project/lldb/test/Shell/Unwind/trap_frame_sym_ctx.test:21:10: error: CHECK: expected string not found in input
CHECK: frame #2: {{.*}}`main
Currently, our unwinder assumes that the functions are continuous (or at
least, that there are no functions which are "in the middle" of other
functions). Neither of these assumptions is true for functions optimized
by tools like propeller and (probably) bolt.
While there are many things that go wrong for these functions, the
biggest damage is caused by the unwind plan caching code, which
currently takes the maximalist extent of the function and assumes that
the unwind plan we get for that is going to be valid for all code inside
that range. If a part of the function has been moved into a "cold"
section, then the range of the function can be many megabytes, meaning
that any function within that range will probably fail to unwind.
We end up with this maximalist range because the unwinder asks for the
Function object for its range. This is only one of the strategies for
determining the range, but it is the first one -- and also the most
incorrect one. The second choice would is asking the eh_frame section
for the range of the function, and this one returns something reasonable
here (the address range of the current function fragment) -- which it
does because each fragment gets its own eh_frame entry (it has to,
because they have to be continuous).
With this in mind, this patch moves the eh_frame (and debug_frame) to
the front of the queue. I think that preferring this range makes sense
because eh_frame is one of the unwind plans that we return, and some
others (augmented eh_frame) are based on it. In theory this could break
some functions, where the debug info and eh_frame disagree on the extent
of the function (and eh_frame is the one who's wrong), but I don't know
of any such scenarios.
Currently a Module has a std::optional<UnwindTable> which is created
when the UnwindTable is requested from outside the Module. The idea is
to delay its creation until the Module has an ObjectFile initialized,
which will have been done by the time we're doing an unwind.
However, Module::GetUnwindTable wasn't doing any locking, so it was
possible for two threads to ask for the UnwindTable for the first time,
one would be created and returned while another thread would create one,
destroy the first in the process of emplacing it. It was an uncommon
crash, but it was possible.
Grabbing the Module's mutex would be one way to address it, but when
loading ELF binaries, we start creating the SymbolTable on one thread
(ObjectFileELF) grabbing the Module's mutex, and then spin up worker
threads to parse the individual DWARF compilation units, which then try
to also get the UnwindTable and deadlock if they try to get the Module's
mutex.
This changes Module to have a concrete UnwindTable as an ivar, and when
it adds an ObjectFile or SymbolFileVendor, it will call the Update
method on it, which will re-evaluate which sections exist in the
ObjectFile/SymbolFile. UnwindTable used to have an Initialize method
which set all the sections, and an Update method which would set some of
them if they weren't set. I unified these with the Initialize method
taking a `force` option to re-initialize the section pointers even if
they had been done already before.
This is addressing a rare crash report we've received, and also a
failure Adrian spotted on the -fsanitize=address CI bot last week, it's
still uncommon with ASAN but it can happen with the standard testsuite.
rdar://128876433
In
commit 2f63718f8567413a1c596bda803663eb58d6da5a
Author: Jason Molenda <jmolenda@apple.com>
Date: Tue Mar 26 09:07:15 2024 -0700
[lldb] Don't clear a Module's UnwindTable when adding a SymbolFile
(#86603)
I stopped clearing a Module's UnwindTable when we add a SymbolFile to
avoid the memory management problems with adding a symbol file
asynchronously while the UnwindTable is being accessed on another
thread. This broke the target-symbols-add-unwind.test shell test on
Linux which removes the DWARF debub_frame section from a binary, loads
it, then loads the unstripped binary with the DWARF debug_frame section
and checks that the UnwindPlans for a function include debug_frame.
I originally decided that I was willing to sacrifice the possiblity of
additional unwind sources from a symbol file because we rely on assembly
emulation so heavily, they're rarely critical. But there are targets
where we we don't have emluation and rely on things like DWARF
debug_frame a lot more, so this probably wasn't a good choice.
This patch adds a new UnwindTable::Update method which looks for any new
sources of unwind information and adds it to the UnwindTable, and calls
that after a new SymbolFile has been added to a Module.
Re-lands 04aa943be8ed5c03092e2a90112ac638360ec253 with modifications
to fix tests.
I originally reverted this because it caused a test to fail on Linux.
The problem was that I inverted a condition on accident.
There are many situations where we'll iterate over a SymbolContextList
with the pattern:
```
SymbolContextList sc_list;
// Fill in sc_list here
for (auto i = 0; i < sc_list.GetSize(); i++) {
SymbolContext sc;
sc_list.GetSymbolAtContext(i, sc);
// Do work with sc
}
```
Adding an iterator to iterate over the instances directly means we don't
have to do bounds checking or create a copy of every element of the
SymbolContextList.
Differential Revision: https://reviews.llvm.org/D149900
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
The C headers are deprecated so as requested in D102845, this is replacing them
all with their (not deprecated) C++ equivalent.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D103084
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
This patch adds an implementation of unwinding using PE EH info. It allows to
get almost ideal call stacks on 64-bit Windows systems (except some epilogue
cases, but I believe that they can be fixed with unwind plan disassembly
augmentation in the future).
To achieve the goal the CallFrameInfo abstraction was made. It is based on the
DWARFCallFrameInfo class interface with a few changes to make it less
DWARF-specific.
To implement the new interface for PECOFF object files the class PECallFrameInfo
was written. It uses the next helper classes:
- UnwindCodesIterator helps to iterate through UnwindCode structures (and
processes chained infos transparently);
- EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram;
- EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction
over the low-level unwind codes and simplifies work with them. It contains
only the information that is relevant to unwinding in the unified form. Also
the required unwind codes are read from the object file only once with it;
- EHProgramRange allows to take a range of EHProgram and to build an unwind row
for it.
So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges
corresponding to every offset in prologue and builds the rows of the resulted
unwind plan. The resulted plan covers the whole range of the function except the
epilogue.
Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola
Reviewed By: jasonmolenda
Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67347
llvm-svn: 374528
Summary:
This is the next step in avoiding funneling all SymbolFile calls through
the SymbolVendor. Right now, it is just a convenience function, but it
allows us to update all calls to SymbolVendor functions to access the
SymbolFile directly. Once all call sites have been updated, we can
remove the GetSymbolVendor member function.
This patch just updates the calls to GetSymbolVendor, which were calling
it just so they could fetch the underlying symbol file. Other calls will
be done in follow-ups.
Reviewers: JDevlieghere, clayborg, jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D65435
llvm-svn: 367664
Summary:
some unwind formats are specific to a single symbol file and so it does
not make sense for their parsing code live in the general Symbol library
(as is the case with eh_frame for instance). This is the case for the
unwind information in breakpad files, but the same will probably be true
for PDB unwind info (once we are able to parse that).
This patch adds the ability to fetch an unwind plan provided by a symbol
file plugin, as discussed in the RFC at
<http://lists.llvm.org/pipermail/lldb-dev/2019-February/014703.html>.
I've kept the set of changes to a minimum, as there is no way to test
them until we have a symbol file which implements this API -- that is
comming in a follow-up patch, which will also implicitly test this
change.
The interesting part here is the introduction of the
"RegisterInfoResolver" interface. The reason for this is that breakpad
needs to be able to resolve register names (which are present as strings
in the file) into register enums so that it can construct the unwind
plan. This is normally done via the RegisterContext class, handing this
over to the SymbolFile plugin would mean that it has full access to the
debugged process, which is not something we want it to have. So instead,
I create a facade, which only provides the ability to query register
names, and hide the RegisterContext behind the facade.
Also note that this only adds the ability to dump the unwind plan
created by the symbol file plugin -- the plan is not used for unwinding
yet -- this will be added in a third patch, which will add additional
tests which makes sure the unwinding works as a whole.
Reviewers: jasonmolenda, clayborg
Subscribers: markmentovai, amccarth, lldb-commits
Differential Revision: https://reviews.llvm.org/D61732
llvm-svn: 360409
Summary:
This is a preparatory step to enable adding of unwind plans by symbol
file plugins.
Although at the surface it seems that currently symbol files have
nothing to do with unwinding, this isn't entirely correct even now. The
mere act of adding a symbol file can have the effect of making more
sections (typically .debug_frame) available to the unwinding machinery,
so that it can have more unwind strategies to choose from.
Up until now, we've had a bug, which went largely unnoticed, where
unwind info in the manually added symbols files (target symbols add) was
being ignored during unwinding. Reinitializing the UnwindTable fixes
that bug too.
Reviewers: clayborg, jasonmolenda, alexshap
Subscribers: jdoerfert, lldb-commits
Differential Revision: https://reviews.llvm.org/D58347
llvm-svn: 356361
Summary:
This is a preparatory step to enable adding extra unwind strategies by
symbol file plugins. This has been discussed on the lldb-dev mailing
list: <http://lists.llvm.org/pipermail/lldb-dev/2019-February/014703.html>.
Reviewers: jasonmolenda, clayborg, espindola
Subscribers: lemo, emaste, lldb-commits, arichardson
Differential Revision: https://reviews.llvm.org/D58129
llvm-svn: 354033
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
instead of returning the architecture through by-ref argument and a
boolean value indicating success, we can just return the ArchSpec
directly. Since the ArchSpec already has an invalid state, it can be
used to denote the failure without the additional bool.
Reviewers: clayborg, zturner, espindola
Subscribers: emaste, arichardson, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D56129
llvm-svn: 350291
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
Summary:
instead of using a boolean to differentiate between the two section
types, use an enum to make the intent clearer.
I also remove the RegisterKind argument from the constructor, as this
can be deduced from the Type argument.
Reviewers: clayborg, jasonmolenda
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D34681
llvm-svn: 306521
Summary:
This is a beefed-up version of D33504, which adds support for dwarf 4
debug_frame section format.
The main difference here is that the decision whether to use eh_frame or
debug_frame is done on a per-function basis instead of per-object file.
This is necessary because one module can contain both sections (for
example, the start files added by the linker will typically pull in
eh_frame), but we want to be able to access both, for maximum
information.
I also add unit test for parsing various CFI formats (eh_frame,
debug_frame v3 and debug_frame v4).
Reviewers: jasonmolenda, clayborg
Subscribers: mgorny, aprantl, abidh, lldb-commits, tatyana-krasnukha
Differential Revision: https://reviews.llvm.org/D34613
llvm-svn: 306397
This reverts commit r303847 as it introduces a number of regressions.
Investigation has showed that we are parsing the CIE entries in the
debug_frame section incorrectly -- we are parsing them the same way as
eh_frame, but the entries in debug_frame have a couple of extra entries
which have not been taken into account.
llvm-svn: 303854
There are some differences between eh_frame and debug_frame formats that
are not considered by DWARFCallFrameInfo::GetFDEIndex. An FDE entry
contains CIE_pointer in debug_frame in same place as cie_id in eh_frame.
As described in dwarf standard (section 6.4.1), CIE_pointer is an
"offset into the .debug_frame section". So, variable cie_offset should
be equal cie_id for debug_frame.
FDE entries with zeroth CIE pointer (which is actually placed in cie_id
variable) shouldn't be ignored also.
I have also added a little change which allow to use debug_info section
when eh_frame is absent. This case really can take place on some platforms.
Patch from tatyana-krasnukha.
https://reviews.llvm.org/D33504
llvm-svn: 303847
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
should not be used for this module -- for use when an ObjectFile
knows that it does not have meaningful or accurate function start
addresses.
More commonly, it is not clear that function start addresses are
missing in a module. There are certain cases on Mac OS X where we
can tell that a Mach-O binary has been stripped of this essential
information, and the unwinder can end up emulating many megabytes
of instructions for a single "function" in the binary.
When a Mach-O binary is missing both an LC_FUNCTION_STARTS load
command (very unusual) and an eh_frame section, then we will assume
it has also been stripped of symbols and that instruction emulation
will not be useful on this module.
<rdar://problem/25988067>
llvm-svn: 268475
.ARM.exidx/.ARM.extab sections contain unwind information used on ARM
architecture from unwinding from an exception.
Differential revision: http://reviews.llvm.org/D13245
llvm-svn: 248903
for eh_frame and stabs register numberings. This is not
complete but it's a step in the right direction. It's almost
entirely mechanical.
lldb informally uses "gcc register numbering" to mean eh_frame.
Why? Probably because there's a notorious bug with gcc on i386
darwin where the register numbers in eh_frame were incorrect.
In all other cases, eh_frame register numbering is identical to
dwarf.
lldb informally uses "gdb register numbering" to mean stabs.
There are no official definitions of stabs register numbers
for different architectures, so the implementations of gdb
and gcc are the de facto reference source.
There were some incorrect uses of these register number types
in lldb already. I fixed the ones that I saw as I made
this change.
This commit changes all references to "gcc" and "gdb" register
numbers in lldb to "eh_frame" and "stabs" to make it clear
what is actually being represented.
lldb cannot parse the stabs debug format, and given that no
one is using stabs any more, it is unlikely that it ever will.
A more comprehensive cleanup would remove the stabs register
numbers altogether - it's unnecessary cruft / complication to
all of our register structures.
In ProcessGDBRemote, when we get register definitions from
the gdb-remote stub, we expect to see "gcc:" (qRegisterInfo)
or "gcc_regnum" (qXfer:features:read: packet to get xml payload).
This patch changes ProcessGDBRemote to also accept "ehframe:"
and "ehframe_regnum" from these remotes.
I did not change GDBRemoteCommunicationServerLLGS or debugserver
to send these new packets. I don't know what kind of interoperability
constraints we might be working under. At some point in the future
we should transition to using the more descriptive names.
Throughout lldb we're still using enum names like "gcc_r0" and "gdb_r0",
for eh_frame and stabs register numberings. These should be cleaned
up eventually too.
The sources link cleanly on macosx native with xcode build. I
don't think we'll see problems on other platforms but please let
me know if I broke anyone.
llvm-svn: 245141
section for x86_64 and i386 targets on Darwin systems. Currently only the
compact unwind encoding for normal frame-using functions is supported but it
will be easy handle frameless functions when I have a bit more free time to
test it. The LSDA and personality routines for functions are also retrieved
correctly for functions from the compact unwind section.
This new code is very fresh -- it passes the lldb testsuite and I've done
by-hand inspection of many functions and am getting correct behavior for all
of them. There may need to be some bug fixing over the next couple weeks as
I exercise and test it further. But I think it's fine right now so I'm
committing it.
<rdar://problem/13220837>
llvm-svn: 223625
to modify the same UnwindTable object simultaneously. Fix
HistoryThread and HistoryUnwind's mutex lock acqusition to
retain the lock for the duration of the operation instead of
releasing the temporary immediately.
<rdar://problem/17055023>
llvm-svn: 211241
and sharing it with all of its FuncUnwinders, have each FuncUnwinder
create an AssemblyProfiler on demand as needed. I was worried that
the cost of creating the llvm disassemblers would be high for this
approach but it's not supposed to be an expensive operation, and it
means we don't need to add locks around this section of code.
<rdar://problem/16992332>
llvm-svn: 209493
to its unwind assembly profiler to all of the FuncUnwinders (one
per symbol) under it. If lldb is running multiple targets, you
could get two different FuncUnwinders in the same Module trying
to use the same llvm disassembler simultaneously and that may be
a re-entrancy problem.
Instead, the UnwindTable has the unwind assembly profiler and when
the FuncUnwinders want to use it, they get exclusive access to
the assembly profiler until they're done using it.
<rdar://problem/16992332>
llvm-svn: 209488
std::string
Module::GetSpecificationDescription () const;
This returns the module as "/usr/lib/libfoo.dylib" for normal files (calls "std::string FileSpec::GetPath()" on m_file) but it also might include the object name in case the module is for a .o file in a BSD archive ("/usr/lib/libfoo.a(bar.o)"). Cleaned up necessary logging code to use it.
llvm-svn: 180717
UnwindPlans for a function. This specifically does not use any
previously-generated UnwindPlans so if any logging is performed
while creating the UnwindPlans, it will be repeated. This is
useful for when an lldb stack trace is not correct and you want
to gather diagnostic information from the user -- they can do
log enable -v lldb unwind, image show-unwind of the function, and
you'll get the full logging as the UnwindPlans are recreated.
llvm-svn: 160095
This was done in SBTarget:
lldb::SBInstructionList
lldb::SBTarget::ReadInstructions (lldb::SBAddress base_addr, uint32_t count);
Also cleaned up a few files in the LLDB.framework settings.
llvm-svn: 152152
inline contexts when the deepest most block is not inlined.
Added source path remappings to the lldb_private::Target class that allow it
to remap paths found in debug info so we can find source files that are elsewhere
on the current system.
Fixed disassembly by function name to disassemble inline functions that are
inside other functions much better and to show enough context before the
disassembly output so you can tell where things came from.
Added the ability to get more than one address range from a SymbolContext
class for the case where a block or function has discontiguous address ranges.
llvm-svn: 130044
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602