Resolves#141955
- Adds data to breakpoints `Source` object, in order for assembly
breakpoints, which rely on a temporary `sourceReference` value, to be
able to resolve in future sessions like normal path+line breakpoints
- Adds optional `instructions_offset` parameter to `BreakpointResolver`
Refactor code revolving source objects such that most logics will be
reused.
The main change is to expose a single `CreateSource(addr, target)` that
can return either a normal or an assembly source object, and call
`ShouldDisplayAssemblySource()` only from this function instead of
multiple places across the code.
Other functions can use `source.IsAssemblySource()` in order to check
which type the source is.
This is the currently the default for
`SBTarget::ReadInstructions(SBAddress, uint32_t)`. But not for others,
to make it consistent used the user assigned instruction flavour.
Use the if statement with an initializer pattern that's very common in
LLVM in SBTarget. Every time someone adds a new method to SBTarget, I
want to encourage using this pattern, but I don't because it would be
inconsistent with the rest of the file. This solves that problem by
switching over the whole file.
Fix the handling of the `instructionOffset` parameter, which resulted in
always returning the wrong disassembly because VSCode always uses
`instructionOffset = -50` and expects 50 instructions before the given
address, instead of 50 bytes before
When you call the `SBTarget::ReadInstructions` with flavor from lldb
crashes. This is because the wrong order of the `DisassemblyBytes`
constructor this fixes that
---------
Signed-off-by: Ebuka Ezike <yerimyah1@gmail.com>
Expose u target API mutex through the SB API. This is motivated by
lldb-dap, which is built on top of the SB API and needs a way to execute
a series of SB API calls in an atomic manner (see #131242).
We can solve this problem by either introducing an additional layer of
locking at the DAP level or by exposing the existing locking at the SB
API level. This patch implements the second approach.
This was discussed in an RFC on Discourse [0]. The original
implementation exposed a move-only lock rather than a mutex [1] which
doesn't work well with SWIG 4.0 [2]. This implement the alternative
solution of exposing the mutex rather than the lock. The SBMutex
conforms to the BasicLockable requirement [3] (which is why the methods
are called `lock` and `unlock` rather than Lock and Unlock) so it can be
used as `std::lock_guard<lldb::SBMutex>` and
`std::unique_lock<lldb::SBMutex>`.
[0]: https://discourse.llvm.org/t/rfc-exposing-the-target-api-lock-through-the-sb-api/85215/6
[1]: https://github.com/llvm/llvm-project/pull/131404
[2]: https://discourse.llvm.org/t/rfc-bumping-the-minimum-swig-version-to-4-1-0/85377/9
[3]: https://en.cppreference.com/w/cpp/named_req/BasicLockable
The WatchAddress API includes a flag to indicate if watchpoint should be
for read, modify or both. This API uses 2 booleans, but the 'modify'
flag was ignored and WatchAddress unconditionally watched write
(actually modify).
We now only watch for modify when the modify flag is true.
---
The included test fails prior to this patch and succeeds after. That is
previously specifying `False` for `modify` would still stop on _write_,
but after the patch correctly only stops on _read_
"statistics dump" currently report the statistics of all targets in
debugger instead of current target. This is wrong because there is a
"statistics dump --all-targets" option that supposed to include
everything.
This PR fixes the issue by only report statistics for current target
instead of all. It also includes the change to reset statistics debug
info/symbol table parsing/indexing time during debugger destroy. This is
required so that we report current statistics if we plan to reuse
lldb/lldb-dap across debug sessions
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
Add the ability to override the disassembly CPU and CPU features through
a target setting (`target.disassembly-cpu` and
`target.disassembly-features`) and a `disassemble` command option
(`--cpu` and `--features`).
This is especially relevant for architectures like RISC-V which relies
heavily on CPU extensions.
The majority of this patch is plumbing the options through. I recommend
looking at DisassemblerLLVMC and the test for the observable change in
behavior.
ValueObject is part of lldbCore for historical reasons, but conceptually
it deserves to be its own library. This does introduce a (link-time) circular
dependency between lldbCore and lldbValueObject, which is unfortunate
but probably unavoidable because so many things in LLDB rely on
ValueObject. We already have cycles and these libraries are never built
as dylibs so while this doesn't improve the situation, it also doesn't
make things worse.
The header includes were updated with the following command:
```
find . -type f -exec sed -i.bak "s%include \"lldb/Core/ValueObject%include \"lldb/ValueObject/ValueObject%" '{}' \;
```
The function should use the by-ref SBError argument instead of creating
a new one. This code has been here since ~forever, and was probably
copied from methods which return an SBError result (where one needs to
create a local variable).
This patch removes all of the Set.* methods from Status.
This cleanup is part of a series of patches that make it harder use the
anti-pattern of keeping a long-lives Status object around and updating
it while dropping any errors it contains on the floor.
This patch is largely NFC, the more interesting next steps this enables
is to:
1. remove Status.Clear()
2. assert that Status::operator=() never overwrites an error
3. remove Status::operator=()
Note that step (2) will bring 90% of the benefits for users, and step
(3) will dramatically clean up the error handling code in various
places. In the end my goal is to convert all APIs that are of the form
` ResultTy DoFoo(Status& error)
`
to
` llvm::Expected<ResultTy> DoFoo()
`
How to read this patch?
The interesting changes are in Status.h and Status.cpp, all other
changes are mostly
` perl -pi -e 's/\.SetErrorString/ = Status::FromErrorString/g' $(git
grep -l SetErrorString lldb/source)
`
plus the occasional manual cleanup.
Cppcheck recommends using a const reference for range variables in a
for-each loop.
This avoids unnecessary copying of elements, improving performance.
Caught by cppcheck -
lldb/source/API/SBBreakpoint.cpp:717:22: performance: Range variable
'name' should be declared as const reference. [iterateByValue]
lldb/source/API/SBTarget.cpp:1150:15: performance: Range variable 'name'
should be declared as const reference. [iterateByValue]
lldb/source/Breakpoint/Breakpoint.cpp:888:26: performance: Range
variable 'name' should be declared as const reference. [iterateByValue]
lldb/source/Breakpoint/BreakpointIDList.cpp:262:26: performance: Range
variable 'name' should be declared as const reference. [iterateByValue]
Fix#91213Fix#91217Fix#91219Fix#91220
This patch provides the initial implementation for the "Step Into
Specific/Step In Targets" feature in VSCode DAP.
The implementation disassembles all the call instructions in step range
and try to resolve operand name (assuming one operand) using debug info.
Later, the call target function name is chosen by end user and specified
in the StepInto() API call.
It is v1 because of using the existing step in target function name API.
This implementation has several limitations:
* Won't for indirect/virtual function call -- in most cases, our
disassembler won't be able to solve the indirect call target
address/name.
* Won't work for target function without debug info -- if the target
function has symbol but not debug info, the existing
ThreadPlanStepInRange won't stop.
* Relying on function names can be fragile -- if there is some middle
glue/thunk code, our disassembler can only resolve the glue/thunk code's
name not the real target function name. It can be fragile to depend
compiler/linker emits the same names for both.
* Does not support step into raw address call sites -- it is a valid
scenario that in Visual Studio debugger, user can explicitly choose a
raw address to step into which land in the function without debug
info/symbol, then choose UI to load the debug info on-demand for that
module/frame to continue exploring.
A more reliable design could be extending the ThreadPlanStepInRange to
support step in based on call-site instruction offset/PC which I will
propose in next iteration.
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
These are hardcoded strings that are already present in the data section
of the binary, no need to immediately place them in the ConstString
StringPools. Lots of code still calls `GetBroadcasterClass` and places
the return value into a ConstString. Changing that would be a good
follow-up.
Additionally, calls to these functions are still wrapped in ConstStrings
at the SBAPI layer. This is because we must guarantee the lifetime of
all strings handed out publicly.
This patch revives the effort to get this Phabricator patch into
upstream:
https://reviews.llvm.org/D137900
This patch was accepted before in Phabricator but I found some
-gsimple-template-names issues that are fixed in this patch.
A fixed up version of the description from the original patch starts
now.
This patch started off trying to fix Module::FindFirstType() as it
sometimes didn't work. The issue was the SymbolFile plug-ins didn't do
any filtering of the matching types they produced, and they only looked
up types using the type basename. This means if you have two types with
the same basename, your type lookup can fail when only looking up a
single type. We would ask the Module::FindFirstType to lookup "Foo::Bar"
and it would ask the symbol file to find only 1 type matching the
basename "Bar", and then we would filter out any matches that didn't
match "Foo::Bar". So if the SymbolFile found "Foo::Bar" first, then it
would work, but if it found "Baz::Bar" first, it would return only that
type and it would be filtered out.
Discovering this issue lead me to think of the patch Alex Langford did a
few months ago that was done for finding functions, where he allowed
SymbolFile objects to make sure something fully matched before parsing
the debug information into an AST type and other LLDB types. So this
patch aimed to allow type lookups to also be much more efficient.
As LLDB has been developed over the years, we added more ways to to type
lookups. These functions have lots of arguments. This patch aims to make
one API that needs to be implemented that serves all previous lookups:
- Find a single type
- Find all types
- Find types in a namespace
This patch introduces a `TypeQuery` class that contains all of the state
needed to perform the lookup which is powerful enough to perform all of
the type searches that used to be in our API. It contain a vector of
CompilerContext objects that can fully or partially specify the lookup
that needs to take place.
If you just want to lookup all types with a matching basename,
regardless of the containing context, you can specify just a single
CompilerContext entry that has a name and a CompilerContextKind mask of
CompilerContextKind::AnyType.
Or you can fully specify the exact context to use when doing lookups
like: CompilerContextKind::Namespace "std"
CompilerContextKind::Class "foo"
CompilerContextKind::Typedef "size_type"
This change expands on the clang modules code that already used a
vector<CompilerContext> items, but it modifies it to work with
expression type lookups which have contexts, or user lookups where users
query for types. The clang modules type lookup is still an option that
can be enabled on the `TypeQuery` objects.
This mirrors the most recent addition of type lookups that took a
vector<CompilerContext> that allowed lookups to happen for the
expression parser in certain places.
Prior to this we had the following APIs in Module:
```
void
Module::FindTypes(ConstString type_name, bool exact_match, size_t max_matches,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeList &types);
void
Module::FindTypes(llvm::ArrayRef<CompilerContext> pattern, LanguageSet languages,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeMap &types);
void Module::FindTypesInNamespace(ConstString type_name,
const CompilerDeclContext &parent_decl_ctx,
size_t max_matches, TypeList &type_list);
```
The new Module API is much simpler. It gets rid of all three above
functions and replaces them with:
```
void FindTypes(const TypeQuery &query, TypeResults &results);
```
The `TypeQuery` class contains all of the needed settings:
- The vector<CompilerContext> that allow efficient lookups in the symbol
file classes since they can look at basename matches only realize fully
matching types. Before this any basename that matched was fully realized
only to be removed later by code outside of the SymbolFile layer which
could cause many types to be realized when they didn't need to.
- If the lookup is exact or not. If not exact, then the compiler context
must match the bottom most items that match the compiler context,
otherwise it must match exactly
- If the compiler context match is for clang modules or not. Clang
modules matches include a Module compiler context kind that allows types
to be matched only from certain modules and these matches are not needed
when d oing user type lookups.
- An optional list of languages to use to limit the search to only
certain languages
The `TypeResults` object contains all state required to do the lookup
and store the results:
- The max number of matches
- The set of SymbolFile objects that have already been searched
- The matching type list for any matches that are found
The benefits of this approach are:
- Simpler API, and only one API to implement in SymbolFile classes
- Replaces the FindTypesInNamespace that used a CompilerDeclContext as a
way to limit the search, but this only worked if the TypeSystem matched
the current symbol file's type system, so you couldn't use it to lookup
a type in another module
- Fixes a serious bug in our FindFirstType functions where if we were
searching for "foo::bar", and we found a "baz::bar" first, the basename
would match and we would only fetch 1 type using the basename, only to
drop it from the matching list and returning no results
Add a new API in SBTarget to Load Core from a SBFile.
This will enable a target to load core from a file descriptor.
So that in coredumper, we don't need to write core file to disk, instead
we can pass the input file descriptor to lldb directly.
Test:
```
(lldb) script
Python Interactive Interpreter. To exit, type 'quit()', 'exit()' or Ctrl-D.
>>> file_object = open("/home/hyubo/210hda79ms32sr0h", "r")
>>> fd=file_object.fileno()
>>> file = lldb.SBFile(fd,'r', True)
>>> error = lldb.SBError()
>>> target = lldb.debugger.CreateTarget(None)
>>> target.LoadCore(file,error)
SBProcess: pid = 56415, state = stopped, threads = 1
```
This completes the conversion of LocateSymbolFile into a SymbolLocator
plugin. The only remaining function is DownloadSymbolFileAsync which
doesn't really fit into the plugin model, and therefore moves into the
SymbolLocator class, while still relying on the plugins to do the
underlying work.
This builds on top of the work started in c3a302d to convert
LocateSymbolFile to a SymbolLocator plugin. This commit moves
DownloadObjectAndSymbolFile.
This reverts commit a7b78cac9a77e3ef6bbbd8ab1a559891dc693401.
With updates to the tests.
TestWatchTaggedAddress.py: Updated the expected watchpoint types,
though I'm not sure there should be a differnt default for the two
ways of setting them, that needs to be confirmed.
TestStepOverWatchpoint.py: Skipped this everywhere because I think
what used to happen is you couldn't put 2 watchpoints on the same
address (after alignment). I guess that this is now allowed because
modify watchpoints aren't accounted for, but likely should be.
Needs investigating.
This reverts commit 933ad5c897ee366759a54869b35b2d7285a92137.
This caused 1 test failure and an unexpected pass on AArch64 Linux:
https://lab.llvm.org/buildbot/#/builders/96/builds/45765
Wasn't reported because the bot was already red at the time.
Watchpoints in lldb can be either 'read', 'write', or 'read/write'. This
is exposing the actual behavior of hardware watchpoints. gdb has a
different behavior: a "write" type watchpoint only stops when the
watched memory region *changes*.
A user is using a watchpoint for one of three reasons:
1. Want to find what is changing/corrupting this memory.
2. Want to find what is writing to this memory.
3. Want to find what is reading from this memory.
I believe (1) is the most common use case for watchpoints, and it
currently can't be done in lldb -- the user needs to continue every time
the same value is written to the watched-memory manually. I think gdb's
behavior is the correct one. There are some use cases where a developer
wants to find every function that writes/reads to/from a memory region,
regardless of value, I want to still allow that functionality.
This is also a bit of groundwork for my large watchpoint support
proposal
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
where I will be adding support for AArch64 MASK watchpoints which watch
power-of-2 memory regions. A user might ask to watch 24 bytes, and a
MASK watchpoint stub can do this with a 32-byte MASK watchpoint if it is
properly aligned. And we need to ignore writes to the final 8 bytes of
that watched region, and not show those hits to the user.
This patch adds a new 'modify' watchpoint type and it is the default.
Re-landing this patch after addressing testsuite failures found in CI on
Linux, Intel machines, and windows.
rdar://108234227
Watchpoints in lldb can be either 'read', 'write', or 'read/write'. This
is exposing the actual behavior of hardware watchpoints. gdb has a
different behavior: a "write" type watchpoint only stops when the
watched memory region *changes*.
A user is using a watchpoint for one of three reasons:
1. Want to find what is changing/corrupting this memory.
2. Want to find what is writing to this memory.
3. Want to find what is reading from this memory.
I believe (1) is the most common use case for watchpoints, and it
currently can't be done in lldb -- the user needs to continue every time
the same value is written to the watched-memory manually. I think gdb's
behavior is the correct one. There are some use cases where a developer
wants to find every function that writes/reads to/from a memory region,
regardless of value, I want to still allow that functionality.
This is also a bit of groundwork for my large watchpoint support
proposal
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
where I will be adding support for AArch64 MASK watchpoints which watch
power-of-2 memory regions. A user might ask to watch 24 bytes, and a
MASK watchpoint stub can do this with a 32-byte MASK watchpoint if it is
properly aligned. And we need to ignore writes to the final 8 bytes of
that watched region, and not show those hits to the user.
This patch adds a new 'modify' watchpoint type and it is the default.
rdar://108234227
Make SBTarget::AddModule possibly call out to an external program to
find the binary by UUID if it can't be found more easily, the same
way `target modules add -u ...` works from the commandline.
If the Target does not have an architecture set yet, use the
Module's Arch to initialize it. Allows an API writer to create
a target with no arch, and inherit it from the first binary they
load with AddModules.
Differential Revision: https://reviews.llvm.org/D157659
rdar://113657555
Fix incorrect uses of formatv specifiers in LLDB_LOG. Unlike Python,
arguments must be numbered. All the affected log statements take
llvm:Errors so use the LLDB_LOG_ERROR macro instead.
Differential revision: https://reviews.llvm.org/D154532
This patch add the ability for the user to set a label for a target.
This can be very useful when debugging targets with the same executables
in the same session.
Labels can be set either at the target creation in the command
interpreter or at any time using the SBAPI.
Target labels show up in the `target list` output, following the target
index, and they also allow the user to switch targets using them.
rdar://105016191
Differential Revision: https://reviews.llvm.org/D151859
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
There were two bugs here.
eMatchTypeStartsWith searched for "symbol_name" by adding ".*" to the
end of the symbol name and treating that as a regex, which isn't
actually a regex for "starts with". The ".*" is in fact a no-op. When
we finally get to comparing the name, we compare against whatever form
of the name was in the accelerator table. But for C++ that might be
the mangled name. We should also try demangled names here, since most
users are going the see demangled not mangled names. I fixed these
two bugs and added a bunch of tests for FindGlobalVariables.
This change is in the DWARF parser code, so there may be a similar bug
in PDB, but the test for this was already skipped for Windows, so I
don't know about this.
You might theoretically need to do this Mangled comparison in
DWARFMappedHash::MemoryTable::FindByName
except when we have names we always chop them before looking them up
so I couldn't see any code paths that fail without that change. So I
didn't add that to this patch.
Differential Revision: https://reviews.llvm.org/D151940
LLDB should guarantee that the strings returned by SBAPI methods
live forever. I went through every method that returns a string and made
sure that it was added to the ConstString StringPool before returning if
it wasn't obvious that it was already doing so.
I've also updated the docs to document this behavior.
Differential Revision: https://reviews.llvm.org/D150804
Currently, SBTarget::SetModuleLoadAddress does not accept large slides
needed to load images in high memory. This function should always have
taken an unsigned as the slide, as it immediately passes it to
Target::SetSectionLoadAddress which takes an unsigned.
This patch adds an overload and exposes that to SWIG instead of the
signed variant. I've marked the signed variant as deprecated and added
check that the slide is positive.
rdar://101355155
Differential revision: https://reviews.llvm.org/D147482
This patch adds process attach capabilities to the ScriptedProcess
plugin. This doesn't really expects a PID or process name, since the
process state is already script, however, this allows to create a
scripted process without requiring to have an executuble in the target.
In order to do so, this patch also turns the scripted process related
getters and setters from the `ProcessLaunchInfo` and
`ProcessAttachInfo` classes to a `ScriptedMetadata` instance and moves
it in the `ProcessInfo` class, so it can be accessed interchangeably.
This also adds the necessary SWIG wrappers to convert the internal
`Process{Attach,Launch}InfoSP` into a `SB{Attach,Launch}Info` to pass it
as argument the scripted process python implementation and convert it
back to the internal representation.
rdar://104577406
Differential Revision: https://reviews.llvm.org/D143104
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
initial stop. The code was using PrivateResume when it should have
used Resume.
This was allowing expression evaluation while the target was running,
and though that was caught a litle later on, we should never have gotten
that far. To make sure that this is caught immediately I made an error
SBValue when this happens, and test that we get this error.
Differential Revision: https://reviews.llvm.org/D144665
When a process gets restarted TypeSystem objects associated with it
may get deleted, and any CompilerType objects holding on to a
reference to that type system are a use-after-free in waiting. Because
of the SBAPI, we don't have tight control over where CompilerTypes go
and when they are used. This is particularly a problem in the Swift
plugin, where the scratch TypeSystem can be restarted while the
process is still running. The Swift plugin has a lock to prevent
abuse, but where there's a lock there can be bugs.
This patch changes CompilerType to store a std::weak_ptr<TypeSystem>.
Most of the std::weak_ptr<TypeSystem>* uglyness is hidden by
introducing a wrapper class CompilerType::WrappedTypeSystem that has a
dyn_cast_or_null() method. The only sites that need to know about the
weak pointer implementation detail are the ones that deal with
creating TypeSystems.
rdar://101505232
Differential Revision: https://reviews.llvm.org/D136650
They don't require that the memory return address be restored prior to
function exit, so there's no guarantee the value is correct. It's better
to return nothing that something that's not accurate.
Differential Revision: https://reviews.llvm.org/D121348
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
Remove the last remaining references to the reproducers from the
instrumentation. This patch renames the relevant files and macros.
Differential revision: https://reviews.llvm.org/D117712
This diff is adding the capping_size determination for the list and forward list, to limit the number of children to be displayed. Also it modifies and unifies tests for libcxx and libstdcpp list data formatter.
Reviewed By: wallace
Differential Revision: https://reviews.llvm.org/D114433
The amount of roundtrips between StringRefs, ConstStrings and std::strings is
getting a bit out of hand, this patch avoid the unnecessary roundtrips.
Reviewed By: wallace, aprantl
Differential Revision: https://reviews.llvm.org/D112863
The new module stats adds the ability to measure the time it takes to parse and index the symbol tables for each module, and reports modules statistics in the output of "statistics dump" along with the path, UUID and triple of the module. The time it takes to parse and index the symbol tables are also aggregated into new top level key/value pairs at the target level.
Differential Revision: https://reviews.llvm.org/D112279
This patch is a smaller version of a previous patch https://reviews.llvm.org/D110804.
This patch modifies the output of "statistics dump" to be able to get stats from the current target. It adds 3 new stats as well. The output of "statistics dump" is now emitted as JSON so that it can be used to track performance and statistics and the output could be used to populate a database that tracks performance. Sample output looks like:
(lldb) statistics dump
{
"expressionEvaluation": {
"failures": 0,
"successes": 0
},
"firstStopTime": 0.34164492800000001,
"frameVariable": {
"failures": 0,
"successes": 0
},
"launchOrAttachTime": 0.31969605400000001,
"targetCreateTime": 0.0040863039999999998
}
The top level keys are:
"expressionEvaluation" which replaces the previous stats that were emitted as plain text. This dictionary contains the success and fail counts.
"frameVariable" which replaces the previous stats for "frame variable" that were emitted as plain text. This dictionary contains the success and fail counts.
"targetCreateTime" contains the number of seconds it took to create the target and load dependent libraries (if they were enabled) and also will contain symbol preloading times if that setting is enabled.
"launchOrAttachTime" is the time it takes from when the launch/attach is initiated to when the first private stop occurs.
"firstStopTime" is the time in seconds that it takes to stop at the first stop that is presented to the user via the LLDB interface. This value will only have meaning if you set a known breakpoint or stop location in your code that you want to measure as a performance test.
This diff is also meant as a place to discuess what we want out of the "statistics dump" command before adding more funcionality. It is also meant to clean up the previous code that was storting statistics in a vector of numbers within the lldb_private::Target class.
Differential Revision: https://reviews.llvm.org/D111686