The script copies `ReleaseNotesTemplate.txt` to corresponding
`ReleaseNotes.rst`/`.md` to clear release notes.
The suffix of `ReleaseNotesTemplate.txt` must be `.txt`. If it is
`.rst`/`.md`, it will be treated as a documentation source file when
building documentation.
Added initial check for potential fmad conversion in reductions and
operands vectorization.
Added the check for instruction to fix#152683
Skipped the code for reduction to avoid regressions.
This introduces a new `ptrtoaddr` instruction which is similar to
`ptrtoint` but has two differences:
1) Unlike `ptrtoint`, `ptrtoaddr` does not capture provenance
2) `ptrtoaddr` only extracts (and then extends/truncates) the low
index-width bits of the pointer
For most architectures, difference 2) does not matter since index (address)
width and pointer representation width are the same, but this does make a
difference for architectures that have pointers that aren't just plain
integer addresses such as AMDGPU fat pointers or CHERI capabilities.
This commit introduces textual and bitcode IR support as well as basic code
generation, but optimization passes do not handle the new instruction yet
so it may result in worse code than using ptrtoint. Follow-up changes will
update capture tracking, etc. for the new instruction.
RFC: https://discourse.llvm.org/t/clarifiying-the-semantics-of-ptrtoint/83987/54
Reviewed By: nikic
Pull Request: https://github.com/llvm/llvm-project/pull/139357
This implements very basic support for RISC-V mapping symbols in
llvm-objdump, sharing the implementation with how Arm/AArch64/CSKY
implement this feature.
This only supports the `$x` (instruction) and `$d` (data) mapping
symbols for RISC-V, and not the version of `$x` which includes an
architecture string suffix.
Adds initial support for copyable elements. This patch only models adds
and model copyable elements as add <element>, 0, i.e. uses identity
constants for missing lanes.
Only support for elements, which do not require scheduling, is added to
reduce size of the patch.
Fixed compile time regressions, reported crashes, updated release notes
Reviewers: RKSimon, hiraditya
Reviewed By: RKSimon
Pull Request: https://github.com/llvm/llvm-project/pull/140279
Adds initial support for copyable elements. This patch only models adds
and model copyable elements as add <element>, 0, i.e. uses identity
constants for missing lanes.
Only support for elements, which do not require scheduling, is added to
reduce size of the patch.
Fixed compile time regressions, updated release notes
Reviewers: RKSimon, hiraditya
Reviewed By: RKSimon
Pull Request: https://github.com/llvm/llvm-project/pull/140279
This patch adds the support for displaying inlined functions into
llvm-objdump.
1) It extends the source variable display
support for inlined functions both for ascii and unicode formats.
2) It also introduces a new format called limits-only that only prints a
line for the start and end of an inlined function without line-drawing
characters.
The i386 psABI specifies that `__float128` has 16 byte alignment and
must be passed on the stack; however, LLVM currently stores it in a
stack slot that has an offset of 4. Add a custom lowering to correct
this alignment to 16-byte.
i386 does not specify an `__int128`, but it seems reasonable to keep the
same behavior as `__float128` so this is changed as well. There also
isn't a good way to distinguish whether a set of four registers came
from an integer or a float.
The main test demonstrating this change is `store_perturbed` in
`llvm/test/CodeGen/X86/i128-fp128-abi.ll`.
Referenced ABI:
https://gitlab.com/x86-psABIs/i386-ABI/-/wikis/uploads/14c05f1b1e156e0e46b61bfa7c1df1e2/intel386-psABI-2020-08-07.pdf
Fixes: https://github.com/llvm/llvm-project/issues/77401
LLDB uses the LLVM disassembler to determine the size of instructions and
to do the actual disassembly. Currently, if the LLVM disassembler can't
disassemble an instruction, LLDB will ignore the instruction size, assume
the instruction size is the minimum size for that device, print no useful
opcode, and print nothing for the instruction.
This patch changes this behavior to separate the instruction size and
"can't disassemble". If the LLVM disassembler knows the size, but can't
dissasemble the instruction, LLDB will use that size. It will print out
the opcode, and will print "<unknown>" for the instruction. This is much
more useful to both a user and a script.
The impetus behind this change is to clean up RISC-V disassembly when
the LLVM disassembler doesn't understand all of the instructions.
RISC-V supports proprietary extensions, where the TD files don't know
about certain instructions, and the disassembler can't disassemble them.
Internal users want to be able to disassemble these instructions.
With llvm-objdump, the solution is to pipe the output of the disassembly
through a filter program. This patch modifies LLDB's disassembly to look
more like llvm-objdump's, and includes an example python script that adds
a command "fdis" that will disassemble, then pipe the output through a
specified filter program. This has been tested with crustfilt, a sample
filter located at https://github.com/quic/crustfilt .
Changes in this PR:
- Decouple "can't disassemble" with "instruction size".
DisassemblerLLVMC::MCDisasmInstance::GetMCInst now returns a bool for
valid disassembly, and has the size as an out paramter.
Use the size even if the disassembly is invalid.
Disassemble if disassemby is valid.
- Always print out the opcode when -b is specified.
Previously it wouldn't print out the opcode if it couldn't disassemble.
- Print out RISC-V opcodes the way llvm-objdump does.
Code for the new Opcode Type eType16_32Tuples by Jason Molenda.
- Print <unknown> for instructions that can't be disassembled, matching
llvm-objdump, instead of printing nothing.
- Update max riscv32 and riscv64 instruction size to 8.
- Add example "fdis" command script.
- Added disassembly byte test for x86 with known and unknown instructions.
- Added disassembly byte test for riscv32 with known and unknown instructions,
with and without filtering.
- Added test from Jason Molenda to RISC-V disassembly unit tests.
This PR introduces support for the DWARF64 format, enabling handling of
64-bit DWARF sections as defined by the DWARF specification. The update
includes adjustments to header parsing and modification of form values
to accommodate 64-bit offsets and values.
Also Added the testcase to verify the DWARF64 format.
As far as I know binutils does not have a similar option and I don't
know of a reason we shouldn't accept the RVC hint instructions.
The wording in the spec in the past suggested that maybe these
weren't valid instruction names, but that's been modified recently.
On x86, the `*l` libcalls are for 80-bit extended precision. `fp128`
needs to use the `*f128` libcalls instead.
Add a few missing ones, esp. for FP min/max.
Also use the `f128` libcalls on x86-32. I believe the situation there is
the same as on x86-64.
In 'asm goto' statements ('callbr' in LLVM IR), you can specify one or
more labels / basic blocks in the containing function which the assembly
code might jump to. If you're also compiling with branch target
enforcement via BTI, then previously listing a basic block as a possible
jump destination of an asm goto would cause a BTI instruction to be
placed at the start of the block, in case the assembly code used an
_indirect_ branch instruction (i.e. to a destination address read from a
register) to jump to that location. Now it doesn't do that any more:
branches to destination labels from the assembly code are assumed to be
direct branches (to a relative offset encoded in the instruction), which
don't require a BTI at their destination.
This change was proposed in https://discourse.llvm.org/t/85845 and there
seemed to be no disagreement. The rationale is:
1. it brings clang's handling of asm goto in Arm and AArch64 in line
with gcc's, which didn't generate BTIs at the target labels in the first
place.
2. it improves performance in the Linux kernel, which uses a lot of 'asm
goto' in which the assembly language just contains a NOP, and the
label's address is saved elsewhere to let the kernel self-modify at run
time to swap between the original NOP and a direct branch to the label.
This allows hot code paths to be instrumented for debugging, at only the
cost of a NOP when the instrumentation is turned off, instead of the
larger cost of an indirect branch. In this situation a BTI is
unnecessary (if the branch happens it's direct), and since the code
paths are hot, also a noticeable performance hit.
Implementation:
`SelectionDAGBuilder::visitCallBr` is the place where 'asm goto' target
labels are handled. It calls `setIsInlineAsmBrIndirectTarget()` on each
target `MachineBasicBlock`. Previously it also called
`setMachineBlockAddressTaken()`, which made `hasAddressTaken()` return
true, which caused a BTI to be added in the Arm backends.
Now `visitCallBr` doesn't call `setMachineBlockAddressTaken()` any more
on asm goto targets, but `hasAddressTaken()` also checks the flag set by
`setIsInlineAsmBrIndirectTarget()`. So call sites that were using
`hasAddressTaken()` don't need to be modified. But the Arm backends
don't call `hasAddressTaken()` any more: instead they test two more
specific query functions that cover all the reasons `hasAddressTaken()`
might have returned true _except_ being an asm goto target.
Testing:
The new test `AArch64/callbr-asm-label-bti.ll` is testing the actual
change, where it expects not to see a `bti` instruction after
`[[LABEL]]`. The rest of the test changes are all churn, due to the
flags on basic blocks changing. Actual output code hasn't changed in any
of the existing tests, only comments and diagnostics.
Further work:
`RISCVIndirectBranchTracking.cpp` and `X86IndirectBranchTracking.cpp`
also call `hasAddressTaken()` in a way that might benefit from using the
same more specific check I've put in `ARMBranchTargets.cpp` and
`AArch64BranchTargets.cpp`. But I'm not sure of that, so in this commit
I've only changed the Arm backends, and left those alone.
This adds assembler/disassembler support for XSfmmbase 0.6 and related
SiFive matrix multiplication extensions based on the spec here
https://www.sifive.com/document-file/xsfmm-matrix-extensions-specification
Functionality-wise, this is the same as the Zvma extension proposal that
SiFive shared with the Attached Matrix Extension Task Group. The
extension names and instruction mnemonics have been changed to use
vendor prefixes.
Note this is a non-conforming extension as the opcodes used here are in
the standard opcode space in OP-V or OP-VE.
---------
Co-authored-by: Brandon Wu <brandon.wu@sifive.com>
This PR adds a amdgns_load_to_lds intrinsic that abstracts over loads to
LDS from global (address space 1) pointers and buffer fat pointers
(address space 7), since they use the same API and "gather from a
pointer to LDS" is something of an abstract operation.
This commit adds the intrinsic and its lowerings for addrspaces 1 and 7,
and updates the MLIR wrappers to use it (loosening up the restrictions
on loads to LDS along the way to match the ground truth from target
features).
It also plumbs the intrinsic through to clang.
Reapply "IR: Remove uselist for constantdata (#137313)"
This reverts commit 5936c02c8b9c6d1476f7830517781ce8b6e26e75.
Fix checking uselists of constants in assume bundle queries