Do not recommend the strict mode to the user when ADR relaxation fails
on a non-simple function, i.e. a function with unknown CFG.
We cannot rely on relocations to reconstruct compiler-generated jump
tables for AArch64, hence strict mode does not work as intended.
ADR can reference a secondary entry point in the same function. If
that's the case, we can skip relaxing the instruction when it is in the
same fragment as its target.
Fixes#108290
Make core BOLT functionality more friendly to being used as a
library instead of in our standalone driver llvm-bolt. To
accomplish this, we augment BinaryContext with journaling streams
that are to be used by most BOLT code whenever something needs to
be logged to the screen. Users of the library can decide if logs
should be printed to a file, no file or to the screen, as
before. To illustrate this, this patch adds a new option
`--log-file` that allows the user to redirect BOLT logging to a
file on disk or completely hide it by using
`--log-file=/dev/null`. Future BOLT code should now use
`BinaryContext::outs()` for printing important messages instead of
`llvm::outs()`. A new test log.test enforces this by verifying that
no strings are print to screen once the `--log-file` option is
used.
In previous patches we also added a new BOLTError class to report
common and fatal errors, so code shouldn't call exit(1) now. To
easily handle problems as before (by quitting with exit(1)),
callers can now use
`BinaryContext::logBOLTErrorsAndQuitOnFatal(Error)` whenever code
needs to deal with BOLT errors. To test this, we have fatal.s
that checks we are correctly quitting and printing a fatal error
to the screen.
Because this is a significant change by itself, not all code was
yet ported. Code from Profiler libs (DataAggregator and friends)
still print errors directly to screen.
Co-authored-by: Rafael Auler <rafaelauler@fb.com>
Test Plan: NFC
As part of the effort to refactor old error handling code that
would directly call exit(1), in this patch we add a new class
BOLTError and auxiliary functions `createFatalBOLTError()` and
`createNonFatalBOLTError()` that allow BOLT code to bubble up the
problem to the caller by using the Error class as a return
type (or Expected). Also changes passes to use these.
Co-authored-by: Rafael Auler <rafaelauler@fb.com>
Test Plan: NFC
As part of the effort to refactor old error handling code that
would directly call exit(1), in this patch we change the
interface to `BinaryFunctionPass` to return an Error on
`runOnFunctions()`. This gives passes the ability to report a
serious problem to the caller (RewriteInstance class), so the
caller may decide how to best handle the exceptional situation.
Co-authored-by: Rafael Auler <rafaelauler@fb.com>
Test Plan: NFC
Currently we have an optimization that if the ADR points to the same
function we might skip it's relaxation. But it doesn't take into account
that BF might be split, in such situation we still need to relax it. And
just in case also relax if the initial BF size is >= 1MB.
Fixes#71822
Currently strict mode is used to expand number of optimized functions,
not to shrink it. Revert the option usage in the pass, so passing strict
option would relax adr instruction even if there are no nops around it.
Also add check for nop after adr instruction.
To do this:
1. Protect BC.Ctx with mutex
2. Don't call exit from thread, please check the reason comment near
PassFailed variable definition. The other option would be call _Exit
instead of exit, but I think we shall call destructors properly.
Avoid replacing one adr instruction with two adrp+add by utilizing linker-provided nops
when they are present. By doing so we preserve relative offsets of next instructions
in a function which reduces chances to break undetected jump tables. This commit makes
release-mode lld-linked clang, lld and etc work after BOLT.
Reviewed By: rafauler, yota9
Differential Revision: https://reviews.llvm.org/D143887
As we are moving towards support for multiple fragments, loops that
iterate over all basic blocks of a function, but do not depend on the
order of basic blocks in the final layout, should iterate over binary
functions directly, rather than the layout.
Eventually, all loops using the layout list should either iterate over
the function, or be aware of multiple layouts. This patch replaces
references to binary function's block layout with the binary function
itself where only little code changes are necessary.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D129585
Summary:
Refactor members of BinaryBasicBlock. Replace some std containers with
ADT equivalents. The size of BinaryBasicBlock on x86-64 Linux is reduced
from 232 bytes to 192 bytes.
(cherry picked from FBD33081850)
Summary:
BinaryContext is available via BinaryFunction::getBinaryContext(),
hence there's no reason to pass both as arguments to a function.
In a similar fashion, BinaryBasicBlock has an access to BinaryFunction
via getFunction(). Eliminate unneeded arguments.
(cherry picked from FBD31921680)
Summary:
Moves source files into separate components, and make explicit
component dependency on each other, so LLVM build system knows how to
build BOLT in BUILD_SHARED_LIBS=ON.
Please use the -c merge.renamelimit=230 git option when rebasing your
work on top of this change.
To achieve this, we create a new library to hold core IR files (most
classes beginning with Binary in their names), a new library to hold
Utils, some command line options shared across both RewriteInstance
and core IR files, a new library called Rewrite to hold most classes
concerned with running top-level functions coordinating the binary
rewriting process, and a new library called Profile to hold classes
dealing with profile reading and writing.
To remove the dependency from BinaryContext into X86-specific classes,
we do some refactoring on the BinaryContext constructor to receive a
reference to the specific backend directly from RewriteInstance. Then,
the dependency on X86 or AArch64-specific classes is transfered to the
Rewrite library. We can't have the Core library depend on targets
because targets depend on Core (which would create a cycle).
Files implementing the entry point of a tool are transferred to the
tools/ folder. All header files are transferred to the include/
folder. The src/ folder was renamed to lib/.
(cherry picked from FBD32746834)