This is a major change on how we represent nested name qualifications in
the AST.
* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.
This patch offers a great performance benefit.
It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.
This has great results on compile-time-tracker as well:

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.
It has some other miscelaneous drive-by fixes.
About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.
There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.
How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.
The rest and bulk of the changes are mostly consequences of the changes
in API.
PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.
Fixes#136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
This patch extends the canonicalization printing policy to cover
expressions
and template names, and wires that up to the template argument printer,
covering expressions, and to the expression within a dependent decltype.
This is helpful for debugging, or if these expressions somehow end up
in diagnostics, as without this patch they can print as completely
unrelated
expressions, which can be quite confusing.
This is because expressions are not uniqued, unlike types, and
when a template specialization containing an expression is the first to
be
canonicalized, the expression ends up appearing in the canonical type of
subsequent equivalent specializations.
Fixes https://github.com/llvm/llvm-project/issues/92292
Improved readability-static-accessed-through-instance check to
support expressions with side-effects.
Originally calls to overloaded operator were
ignored by check, in fear of possible side-effects.
This change remove that restriction, and enables
fix-its for expressions with side-effect via
--fix-notes.
Closes#75163
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
Use isStatic instead of isStaticStorageClass to properly
handle a out-of-line definitions.
Fixes: #51861
Reviewed By: carlosgalvezp
Differential Revision: https://reviews.llvm.org/D157326
Previously we would provide a fixit which looked like
this `unnamed struct at ...::f()` but which is obviously
not valid C/C++.
Since there is no real nice way to accesses a static function
from an anonymous struct anyways we simply ignore all
anonymous structs.
Fixes llvm#61736
Reviewed By: PiotrZSL
Differential Revision: https://reviews.llvm.org/D147411
fixed [60810](https://github.com/llvm/llvm-project/issues/60810)
unscoped enumerations in class can also be checked by `readability-static-accessed-through-instance`
add matcher for `enumConstantDecl` to match format
```
struct {
enum { E1 };
};
```
The filter of member expression and the fix hint should be same as other condition.
Reviewed By: PiotrZSL
Differential Revision: https://reviews.llvm.org/D147315
clang-tidy can be used to statically analyze CUDA code,
thanks to clang being able to compile CUDA code natively.
This makes clang-tidy the one and only open-source
static analyzer for CUDA.
However it currently warns for native CUDA built-in
variables, like threadIdx, due to the way they
are implemented in clang.
Users don't need to know the details of the clang
implementation, and they should continue to write
idiomatic code. Therefore, suppress the warning
if a CUDA built-in variable is encountered.
Fixes https://bugs.llvm.org/show_bug.cgi?id=48758
Summary:
Fixed https://bugs.llvm.org/show_bug.cgi?id=40544
Before, we would generate a fixit like `(anonymous namespace)::Foo::fun();` for
the added test case.
Reviewers: aaron.ballman, alexfh, xazax.hun
Subscribers: rnkovacs, cfe-commits
Tags: #clang, #clang-tools-extra
Differential Revision: https://reviews.llvm.org/D61874
llvm-svn: 360698
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636