Give users an option (-fptrauth-function-pointer-type-discrimination) to
sign a function pointer using a non-zero discriminator based on the
function type.
The discriminator is computed by first translating the function type to
a string and then computing the hash value of the string. Two function
types that are compatible in C must be translated to the same string
with the exception of function types that use typedefs of anonymous
structs in their return type or parameter types.
This patch doesn't have the code to resign function pointers, which is
needed when a function pointer is converted to a different function
type. That will be implemented in another patch.
Co-authored-by: John McCall <rjmccall@apple.com>
---------
Co-authored-by: John McCall <rjmccall@apple.com>
Virtual function pointer entries in v-tables are signed with address
discrimination in addition to declaration-based discrimination, where an
integer discriminator the string hash (see
`ptrauth_string_discriminator`) of the mangled name of the overridden
method. This notably provides diversity based on the full signature of
the overridden method, including the method name and parameter types.
This patch introduces ItaniumVTableContext logic to find the original
declaration of the overridden method.
On AArch64, these pointers are signed using the `IA` key (the
process-independent code key.)
V-table pointers can be signed with either no discrimination, or a
similar scheme using address and decl-based discrimination. In this
case, the integer discriminator is the string hash of the mangled
v-table identifier of the class that originally introduced the vtable
pointer.
On AArch64, these pointers are signed using the `DA` key (the
process-independent data key.)
Not using discrimination allows attackers to simply copy valid v-table
pointers from one object to another. However, using a uniform
discriminator of 0 does have positive performance and code-size
implications on AArch64, and diversity for the most important v-table
access pattern (virtual dispatch) is already better assured by the
signing schemas used on the virtual functions. It is also known that
some code in practice copies objects containing v-tables with `memcpy`,
and while this is not permitted formally, it is something that may be
invasive to eliminate.
This is controlled by:
```
-fptrauth-vtable-pointer-type-discrimination
-fptrauth-vtable-pointer-address-discrimination
```
In addition, this provides fine-grained controls in the
ptrauth_vtable_pointer attribute, which allows overriding the default
ptrauth schema for vtable pointers on a given class hierarchy, e.g.:
```
[[clang::ptrauth_vtable_pointer(no_authentication, no_address_discrimination,
no_extra_discrimination)]]
[[clang::ptrauth_vtable_pointer(default_key, default_address_discrimination,
custom_discrimination, 0xf00d)]]
```
The override is then mangled as a parametrized vendor extension:
```
"__vtptrauth" I
<key>
<addressDiscriminated>
<extraDiscriminator>
E
```
To support this attribute, this patch adds a small extension to the
attribute-emitter tablegen backend.
Note that there are known areas where signing is either missing
altogether or can be strengthened. Some will be addressed in later
changes (e.g., member function pointers, some RTTI).
`dynamic_cast` in particular is handled by emitting an artificial
v-table pointer load (in a way that always authenticates it) before the
runtime call itself, as the runtime doesn't have enough information
today to properly authenticate it. Instead, the runtime is currently
expected to strip the v-table pointer.
---------
Co-authored-by: John McCall <rjmccall@apple.com>
Co-authored-by: Ahmed Bougacha <ahmed@bougacha.org>
This patch fixes a crash when trying to emit a constant compound literal.
For C++ Clang evaluates either casts or binary operations at translation time,
but doesn't pass on the InConstantContext information that was inferred when
parsing the statement. Because of this, strict FP evaluation (-ftrapping-math)
which shouldn't be in effect yet, then causes checkFloatingpointResult to return
false, which in tryEmitGlobalCompoundLiteral will trigger an assert that the
compound literal wasn't constant.
The discussion here around 'manifestly constant evaluated contexts' was very
helpful to me when trying to understand what LLVM's position is on what
evaluation context should be in effect, together with the explanatory text in
that patch itself:
https://reviews.llvm.org/D87528
Reviewed By: rjmccall, DavidSpickett
Differential Revision: https://reviews.llvm.org/D131555
Prevent IR-gen from emitting consteval declarations
Summary: with this patch instead of emitting calls to consteval function. the IR-gen will emit a store of the already computed result.
Summary: with this patch instead of emitting calls to consteval function. the IR-gen will emit a store of the already computed result.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76420
Summary: Fix PR43700
The ConstantEmitter in AggExprEmitter::EmitArrayInit was initialized
with the CodeGenFunction set to null, which caused the crash.
Also simplify another call, and make the CGF member a const pointer
since it is public but only assigned in the constructor.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70302
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Convert clang::LangAS to a strongly typed enum
Currently both clang AST address spaces and target specific address spaces
are represented as unsigned which can lead to subtle errors if the wrong
type is passed. It is especially confusing in the CodeGen files as it is
not possible to see what kind of address space should be passed to a
function without looking at the implementation.
I originally made this change for our LLVM fork for the CHERI architecture
where we make extensive use of address spaces to differentiate between
capabilities and pointers. When merging the upstream changes I usually
run into some test failures or runtime crashes because the wrong kind of
address space is passed to a function. By converting the LangAS enum to a
C++11 we can catch these errors at compile time. Additionally, it is now
obvious from the function signature which kind of address space it expects.
I found the following errors while writing this patch:
- ItaniumRecordLayoutBuilder::LayoutField was passing a clang AST address
space to TargetInfo::getPointer{Width,Align}()
- TypePrinter::printAttributedAfter() prints the numeric value of the
clang AST address space instead of the target address space.
However, this code is not used so I kept the current behaviour
- initializeForBlockHeader() in CGBlocks.cpp was passing
LangAS::opencl_generic to TargetInfo::getPointer{Width,Align}()
- CodeGenFunction::EmitBlockLiteral() was passing a AST address space to
TargetInfo::getPointerWidth()
- CGOpenMPRuntimeNVPTX::translateParameter() passed a target address space
to Qualifiers::addAddressSpace()
- CGOpenMPRuntimeNVPTX::getParameterAddress() was using
llvm::Type::getPointerTo() with a AST address space
- clang_getAddressSpace() returns either a LangAS or a target address
space. As this is exposed to C I have kept the current behaviour and
added a comment stating that it is probably not correct.
Other than this the patch should not cause any functional changes.
Reviewers: yaxunl, pcc, bader
Reviewed By: yaxunl, bader
Subscribers: jlebar, jholewinski, nhaehnle, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D38816
llvm-svn: 315871
the interface.
The ultimate goal here is to make it easier to do some more interesting
things in constant emission, like emit constant initializers that have
ignorable side-effects, or doing the majority of an initialization
in-place and then patching up the last few things with calls. But for
now this is mostly just a refactoring.
llvm-svn: 310964