Currently, `new struct S` fails to set any valid end source location
because the token corresponding to `S` is consumed in
`ParseClassSpecifier` and is not accessible in the
`ParseDeclarationSpecifiers` that normally sets the end source location.
Fixes#35300
I'm planning to remove StringRef::equals in favor of
StringRef::operator==.
- StringRef::operator==/!= outnumber StringRef::equals by a factor of
24 under clang/ in terms of their usage.
- The elimination of StringRef::equals brings StringRef closer to
std::string_view, which has operator== but not equals.
- S == "foo" is more readable than S.equals("foo"), especially for
!Long.Expression.equals("str") vs Long.Expression != "str".
Try to fix https://github.com/llvm/llvm-project/issues/75221
This crash caused by calculating record layout which contains a field
declaration with dependent type. Make it invalid before it is a complete
definition to prevent this crash. Define a new scope type to record this
type alias and set the record declaration invalid when it is defined in
a type alias template.
Co-authored-by: huqizhi <836744285@qq.com>
This reverts commit ca4c4a6758d184f209cb5d88ef42ecc011b11642.
This was intended not to introduce new consistency diagnostics for
smart pointer types, but failed to ignore sugar around types when
detecting this.
Fixed and test added.
This reverts commit 92a09c0165b87032e1bd05020a78ed845cf35661.
This is triggering a bunch of new -Wnullability-completeness warnings
in code with existing raw pointer nullability annotations.
The intent was the new nullability locations wouldn't affect those
warnings, so this is a bug at least for now.
This enables clang and external nullability checkers to make use of
these annotations on nullable C++ class types like unique_ptr.
These types are recognized by the presence of the _Nullable attribute.
Nullable standard library types implicitly receive this attribute.
Existing static warnings for raw pointers are extended to smart
pointers:
- nullptr used as return value or argument for non-null functions
(`-Wnonnull`)
- assigning or initializing nonnull variables with nullable values
(`-Wnullable-to-nonnull-conversion`)
It doesn't implicitly add these attributes based on the assume_nonnull
pragma, nor warn on missing attributes where the pragma would apply
them.
I'm not confident that the pragma's current behavior will work well for
C++ (where type-based metaprogramming is much more common than C/ObjC).
We'd like to revisit this once we have more implementation experience.
Support can be detected as `__has_feature(nullability_on_classes)`.
This is needed for back-compatibility, as previously clang would issue a
hard error when _Nullable appears on a smart pointer.
UBSan's `-fsanitize=nullability` will not check smart-pointer types.
It can be made to do so by synthesizing calls to `operator bool`, but
that's left for future work.
Discussion:
https://discourse.llvm.org/t/rfc-allowing-nonnull-etc-on-smart-pointers/77201/26
This pr implements the `[[omp::assume]]` spelling for the `__attribute__((assume))` attribute. It does not change anything about how that attribute is handled by the rest of Clang.
This implements the C++23 `[[assume]]` attribute.
Assumption information is lowered to a call to `@llvm.assume`, unless the expression has side-effects, in which case it is discarded and a warning is issued to tell the user that the assumption doesn’t do anything. A failed assumption at compile time is an error (unless we are in `MSVCCompat` mode, in which case we don’t check assumptions at compile time).
Due to performance regressions in LLVM, assumptions can be disabled with the `-fno-assumptions` flag. With it, assumptions will still be parsed and checked, but no calls to `@llvm.assume` will be emitted and assumptions will not be checked at compile time.
Our usual pattern when issuing an extension warning is to also issue a
default-off diagnostic about the keywords not being compatible with
standards before a certain point. This adds those diagnostics for C11
keywords.
In C++, alignas is an attribute specifier, while in C23, it's an alias
of _Alignas, which is a type specifier/qualifier. This means that they
parse differently in some circumstances.
Fixes https://github.com/llvm/llvm-project/issues/81472
According to [temp.pre] p5:
> In a template-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the declaration shall contain at most one declarator.
A member-declaration that is a template-declaration or explicit-specialization contains a declaration, even though it declares a member. This means it _will_ contain an init-declarator-list (not a member-declarator-list), so [temp.pre] p5 applies.
This diagnoses declarations such as:
```
struct A
{
template<typename T>
static const int x = 0, f(); // error: a template declaration can only declare a single entity
template<typename T>
static const int g(), y = 0; // error: a template declaration can only declare a single entity
};
```
The diagnostic messages are the same as those of the equivalent namespace scope declarations.
Note: since we currently do not diagnose declarations with multiple abbreviated function template declarators at namespace scope e.g., `void f(auto), g(auto);`, so this patch does not add diagnostics for the equivalent member declarations.
This patch also refactors `ParseSingleDeclarationAfterTemplate` (now named `ParseDeclarationAfterTemplate`) to call `ParseDeclGroup` and return the resultant `DeclGroup`.
Implements https://isocpp.org/files/papers/P2662R3.pdf
The feature is exposed as an extension in older language modes.
Mangling is not yet supported and that is something we will have to do before release.
This patch replaces the `__arm_new_za`, `__arm_shared_za` and
`__arm_preserves_za` attributes in favour of:
* `__arm_new("za")`
* `__arm_in("za")`
* `__arm_out("za")`
* `__arm_inout("za")`
* `__arm_preserves("za")`
As described in https://github.com/ARM-software/acle/pull/276.
One change is that `__arm_in/out/inout/preserves(S)` are all mutually
exclusive, whereas previously it was fine to write `__arm_shared_za
__arm_preserves_za`. This case is now represented with `__arm_in("za")`.
The current implementation uses the same LLVM attributes under the hood,
since `__arm_in/out/inout` are all variations of "shared ZA", so can use
the existing `aarch64_pstate_za_shared` attribute in LLVM.
#77941 will add support for the new "zt0" state as introduced
with SME2.
- Support non-member functions and callable objects for size and data().
We previously tried to (badly) pick the best overload ourselves, in a
way that would only support member functions. We now leave clang
construct an unresolved member expression and call that, properly
performing overload resolution with callable objects and static
functions, consistent with the logic for `get` calls for structured
bindings.
- Support UDLs as message expression.
- Add tests and mark CWG2798 as resolved
Initial commits to support OpenACC. This patchset:
adds a clang-command line argument '-fopenacc', and starts
to define _OPENACC, albeit to '1' instead of the standardized
value (since we don't properly implement OpenACC yet).
The OpenACC spec defines `_OPENACC` to be equal to the latest standard
implemented. However, since we're not done implementing any standard,
we've defined this by default to be `1`. As it is useful to run our
compiler against existing OpenACC workloads, we're providing a
temporary override flag to change the `_OPENACC` value to be any
entirely digit value, permitting testing against any existing OpenACC
project.
Exactly like the OpenMP parser, the OpenACC pragma parser needs to
consume and reprocess the tokens. This patch sets up the infrastructure
to do so by refactoring the OpenMP version of this into a more general
version that works for OpenACC as well.
Additionally, this adds a few diagnostics and token kinds to get us
started.
This implements the [[msvc::no_unique_address]] attribute.
There is not ABI compatibility in this patch because the attribute is
relatively new and there's still some uncertainty in the MSVC version.
The recommit changes the attribute definitions so that instead of making
two separate attributes for no_unique_address
and msvc::no_unique_address, it modifies the attributes tablegen emitter
to allow spellings to be target-specific.
This reverts commit 71f9e7695b87298f9855d8890f0e6a3b89381eb5.
The conditions of a noexcept and explicit specifier are full
expressions. Before this patch, we would call ActOnFinishFullExpr on
these in the context of the enclosing expression, which would cause the
collect of odr-used variables (and subsequently capture attempts) in the
wrong (enclosing) context.
This was observable when parsing the noexcept specifier condition of a
lambda appearing in a wider full expression odr-using variables.
Fixes#67492
This reverts commit 491b2810fb7fe5f080fa9c4f5945ed0a6909dc92.
This change broke valid code and generated incorrect diagnostics, see
https://reviews.llvm.org/D155064
This patch makes clang diagnose extensive cases of consteval if and is_constant_evaluated usage that are tautologically true or false.
This introduces a new IsRuntimeEvaluated boolean flag to Sema::ExpressionEvaluationContextRecord that means the immediate appearance of if consteval or is_constant_evaluated are tautologically false(e.g. inside if !consteval {} block or non-constexpr-qualified function definition body)
This patch also pushes new expression evaluation context when parsing the condition of if constexpr and initializer of constexpr variables so that Sema can be aware that the use of consteval if and is_consteval are tautologically true in if constexpr condition and constexpr variable initializers.
BEFORE this patch, the warning for is_constant_evaluated was emitted from constant evaluator. This patch moves the warning logic to Sema in order to diagnose tautological use of is_constant_evaluated in the same way as consteval if.
This patch separates initializer evaluation context from InitializerScopeRAII.
This fixes a bug that was happening when user takes address of function address in initializers of non-local variables.
Fixes https://github.com/llvm/llvm-project/issues/43760
Fixes https://github.com/llvm/llvm-project/issues/51567
Reviewed By: cor3ntin, ldionne
Differential Revision: https://reviews.llvm.org/D155064
This reverts commit 4a55d426967b9c70f5dea7b3a389e11393a4f4c4.
Reverting because this breaks sphinx documentation, and even with it
fixed the format of the attribute makes the no_unique_address
documentation show up twice.
Per CWG2760, default members initializers should be consider part the
body of constructors, which mean they are evaluated in an immediate
escalating context.
However, this does not apply to static members.
This patch produces some extraneous diagnostics, unfortunately we do not
have a good way to report an error back to the initializer and this is a
pre existing issue
Fixes#65985Fixes#66562
This is information that the compiler already has, and should be exposed
so that the library doesn't need to reimplement the exact same
functionality.
Differential Revision: https://reviews.llvm.org/D135341
I'm reverting this on principle, since it didn't get the Phabricator
approval I thought it had (only an informal LGTM). Will re-apply once
it has been properly approved.
This reverts commit e1bfeb6bcc627a94c5ab3a5417d290c7dc516d54.
This is information that the compiler already has, and should be exposed
so that the library doesn't need to reimplement the exact same
functionality.
Differential Revision: https://reviews.llvm.org/D135341
This is a complementary to D156237.
These attributes have custom parsing logic.
Reviewed By: cor3ntin
Differential Revision: https://reviews.llvm.org/D159024
This does the rename for most internal uses of C2x, but does not rename
or reword diagnostics (those will be done in a follow-up).
I also updated standards references and citations to the final wording
in the standard.
Emiting an error on unexpected encoding prefix - which was allowed before C++26 -
caused build errors for a few users.
This downgrade the error to a warning on older language modes and C.
Reviewed By: aaron.ballman, hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D156596
Predefined identifiers like __FUNCTION__ are treated like string
literals in MSVC, which means they can be concatentated together with
an adjacent string literal. Clang now supports this behavior as well,
in Microsoft extensions mode.
Fixes https://github.com/llvm/llvm-project/issues/63563
Differential Revision: https://reviews.llvm.org/D153914
This is a C++ feature that allows the use of `_` to
declare multiple variable of that name in the same scope;
these variables can then not be referred to.
In addition, while P2169 does not extend to parameter
declarations, we stop warning on unused parameters of that name,
for consistency.
The feature is backported to all C++ language modes.
Reviewed By: #clang-language-wg, aaron.ballman
Differential Revision: https://reviews.llvm.org/D153536
This patch proposes to handle in an uniform fashion
the parsing of strings that are never evaluated,
in asm statement, static assert, attrributes, extern,
etc.
Unevaluated strings are UTF-8 internally and so currently
behave as narrow strings, but these things will diverge with
D93031.
The big question both for this patch and the P2361 paper
is whether we risk breaking code by disallowing
encoding prefixes in this context.
I hope this patch may allow to gather some data on that.
Future work:
Improve the rendering of unicode characters, line break
and so forth in static-assert messages
Reviewed By: aaron.ballman, shafik
Differential Revision: https://reviews.llvm.org/D105759