The new builtin `__builtin_dedup_pack` removes duplicates from list of
types.
The added builtin is special in that they produce an unexpanded pack
in the spirit of P3115R0 proposal.
Produced packs can be used directly in template argument lists and get
immediately expanded as soon as results of the computation are
available.
It allows to easily combine them, e.g.:
```cpp
template <class ...T>
struct Normalize {
// Note: sort is not included in this PR, it illustrates the idea.
using result = std::tuple<
__builtin_sort_pack<
__builtin_dedup_pack<int, double, T...>...
>...>;
}
;
```
Limitations:
- only supported in template arguments and bases,
- can only be used inside the templates, even if non-dependent,
- the builtins cannot be assigned to template template parameters.
The actual implementation proceeds as follows:
- When the compiler encounters a `__builtin_dedup_pack` or other
type-producing
builtin with dependent arguments, it creates a dependent
`TemplateSpecializationType`.
- During substitution, if the template arguments are non-dependent, we
will produce: a new type `SubstBuiltinTemplatePackType`, which stores
an argument pack that needs to be substituted. This type is similar to
the existing `SubstTemplateParmPack` in that it carries the argument
pack that needs to be expanded further. The relevant code is shared.
- On top of that, Clang also wraps the resulting type into
`TemplateSpecializationType`, but this time only as a sugar.
- To actually expand those packs, we collect the produced
`SubstBuiltinTemplatePackType` inside `CollectUnexpandedPacks`.
Because we know the size of the produces packs only after the initial
substitution, places that do the actual expansion will need to have a
second run over the substituted type to finalize the expansions (in
this patch we only support this for template arguments, see
`ExpandTemplateArgument`).
If the expansion are requested in the places we do not currently
support, we will produce an error.
More follow-up work will be needed to fully shape this:
- adding the builtin that sorts types,
- remove the restrictions for expansions,
- implementing P3115R0 (scheduled for C++29, see
https://github.com/cplusplus/papers/issues/2300).
The immediate evaluation context needs the lambda scope info to
propagate some flags, however that LSI was removed in
ActOnFinishFunctionBody which happened before rebuilding a lambda
expression.
The last attempt destroyed LSI at the end of the block scope, after
which we still need it in DiagnoseShadowingLambdaDecls.
This also converts the wrapper function to default arguments as a
drive-by fix, as well as does some cleanup.
Fixes https://github.com/llvm/llvm-project/issues/145776
We have a flag that tracks whether a `CXXThisExpr` refers to a `*this`
capture in a lambda with a dependent explicit object parameter; this is
to mark it and member accesses involving it as dependent because there
is no other way to track that (DREs have a similar flag); when
instantiating the lambda, we need to always rebuild the `CXXThisExpr` to
potentially clear that flag if the explicit object parameter is no
longer dependent.
Fixes#154054.
This patch does the bare minimum to start setting up the reduction
recipe support, including adding a type to the AST to store it. No real
additional work is done, and a bunch of static_asserts are left around
to allow us to do this properly.
The immediate evaluation context needs the lambda scope info to
propagate some flags, however that LSI was removed in
ActOnFinishFunctionBody which happened before rebuilding a lambda
expression.
This also converts the wrapper function to default arguments as a
drive-by fix.
Fixes https://github.com/llvm/llvm-project/issues/145776
This is a major change on how we represent nested name qualifications in
the AST.
* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.
This patch offers a great performance benefit.
It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.
This has great results on compile-time-tracker as well:

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.
It has some other miscelaneous drive-by fixes.
About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.
There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.
How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.
The rest and bulk of the changes are mostly consequences of the changes
in API.
PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.
Fixes#136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
This patch adds the 'init recipes' to firstprivate like I did for
'private', so that we can properly init these types. At the moment,
the recipe init isn't generated (just the VarDecl), and this isn't
really used anywhere as it will be used exclusively in Codegen.
Previously, #151360 implemented 'private' clause lowering, but didn't
properly initialize the variables. This patch adds that behavior to make
sure we correctly get the constructor or other init called.
This is a first pass at implementing
[P2841R7](https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p2841r7.pdf).
The implementation is far from complete; however, I'm aiming to do that
in chunks, to make our lives easier.
In particular, this does not implement
- Subsumption
- Mangling
- Satisfaction checking is minimal as we should focus on #141776 first
(note that I'm currently very stuck)
FTM, release notes, status page, etc, will be updated once the feature
is more mature. Given the state of the feature, it is not yet allowed in
older language modes.
Of note:
- Mismatches between template template arguments and template template
parameters are a bit wonky. This is addressed by #130603
- We use `UnresolvedLookupExpr` to model template-id. While this is
pre-existing, I have been wondering if we want to introduce a different
OverloadExpr subclass for that. I did not make the change in this patch.
The checks for the 'z' and 't' format specifiers added in the original
PR #143653 had some issues and were overly strict, causing some build
failures and were consequently reverted at
4c85bf2fe8.
In the latest commit
27c58629ec,
I relaxed the checks for the 'z' and 't' format specifiers, so warnings
are now only issued when they are used with mismatched types.
The original intent of these checks was to diagnose code that assumes
the underlying type of `size_t` is `unsigned` or `unsigned long`, for
example:
```c
printf("%zu", 1ul); // Not portable, but not an error when size_t is unsigned long
```
However, it produced a significant number of false positives. This was
partly because Clang does not treat the `typedef` `size_t` and
`__size_t` as having a common "sugar" type, and partly because a large
amount of existing code either assumes `unsigned` (or `unsigned long`)
is `size_t`, or they define the equivalent of size_t in their own way
(such as
sanitizer_internal_defs.h).2e67dcfdcd/compiler-rt/lib/sanitizer_common/sanitizer_internal_defs.h (L203)
Including the results of `sizeof`, `sizeof...`, `__datasizeof`,
`__alignof`, `_Alignof`, `alignof`, `_Countof`, `size_t` literals, and
signed `size_t` literals, the results of pointer-pointer subtraction and
checks for standard library functions (and their calls).
The goal is to enable clang and downstream tools such as clangd and
clang-tidy to provide more portable hints and diagnostics.
The previous discussion can be found at #136542.
This PR implements this feature by introducing a new subtype of `Type`
called `PredefinedSugarType`, which was considered appropriate in
discussions. I tried to keep `PredefinedSugarType` simple enough yet not
limited to `size_t` and `ptrdiff_t` so that it can be used for other
purposes. `PredefinedSugarType` wraps a canonical `Type` and provides a
name, conceptually similar to a compiler internal `TypedefType` but
without depending on a `TypedefDecl` or a source file.
Additionally, checks for the `z` and `t` format specifiers in format
strings for `scanf` and `printf` were added. It will precisely match
expressions using `typedef`s or built-in expressions.
The affected tests indicates that it works very well.
Several code require that `SizeType` is canonical, so I kept `SizeType`
to its canonical form.
The failed tests in CI are allowed to fail. See the
[comment](https://github.com/llvm/llvm-project/pull/135386#issuecomment-3049426611)
in another PR #135386.
Add `NamespaceBaseDecl` as common base class of `NamespaceDecl` and
`NamespaceAliasDecl`. This simplifies `NestedNameSpecifier` a bit.
Co-authored-by: Matheus Izvekov <mizvekov@gmail.com>
This fixes a failed assertion with an operator call expression which
comes from a macro expansion when performing analysis for nullability
attributes.
Fixes#138371
Deal with the following scenario
```cpp
struct S {
char* c = new char;
constexpr ~S() {
delete c;
}
};
if constexpr((S{}, true)){};
```
There were two issues
- We need to produce a full expression _before_ evaluating the condition
(otherwise, automatic variables are never destroyed)
- We need to preserve the evaluation context of the condition while
doing the semantics analysis for it (lest it is evaluated in a
non-constant-evaluated context)
Fixes#120197Fixes#134820
Fixes 2 bugs reported in #146063
- The body of a lambda appearing in a discarded statement was sometimes
considered discarded itself
- A lambda conversion operator that was not odr-used was sometimes not
defined even if it was needed
Fixes#146063
---------
Co-authored-by: Timm Baeder <tbaeder@redhat.com>
Implement parsing and semantic analysis support for the optional
'strict' modifier of the num_threads clause. This modifier has been
introduced in OpenMP 6.0, section 12.1.2.
Note: this is basically 1:1 https://reviews.llvm.org/D138328.
ArrayRef has a constructor that accepts std::nullopt. This
constructor dates back to the days when we still had llvm::Optional.
Since the use of std::nullopt outside the context of std::optional is
kind of abuse and not intuitive to new comers, I would like to move
away from the constructor and eventually remove it.
This patch takes care of the clang side of the migration.
The previous approach broke code generation for the MS ABI due to an
unintended code path during constraint substitution. This time we
address the issue by inspecting the evaluation contexts and thereby
avoiding that code path.
This reapplies 96eced624 (#102857).
Resolves#138939
When enabling `--fno-exceptions` flag, discarded statements containing
`try/catch/throw` in an independent context can be avoided from being
rejected.
Allows the __ptrauth qualifier to be applied to pointer sized integer types,
updates Sema to ensure trivially copyable, etc correctly handle address
discriminated integers, and updates codegen to perform authentication
around arithmetic on the types.
We were converting a CXXParenListInitExpr to a ParenListExpr in
TreeTransform.
However, ParenListExpr is typeless, so Clang could not rebuild the
correct initialization sequence in some contexts.
Fixes#72880
We made chained comparisons an error.
Fold-expressions over a comparison operator produce chained comparisons,
so we should be consistent there too.
We only emit the warning when instantiating the fold expression so as
not to warn on types with user-defined comparisons.
Partially addresses #129570
This patch adds templated `operator<<` for diagnostics that pass scoped
enums, saving people from `llvm::to_underlying()` clutter on the side of
emitting the diagnostic. This eliminates 80 out of 220 usages of
`llvm::to_underlying()` in Clang.
I also backported `std::is_scoped_enum_v` from C++23.
The 'wait' clause is a bit complicated, and is laid out awkwardly in the
IR addative functions, so this patch has to do a little bit of work to
do that (mostly the 'devnum' work).
Otherwise, this is very similar to how num_gangs works, with the
additional complexity of the 'empty' wait being represented differently
as well, but this is similar to how 'async' and a few others work as
well.
…uses
The Flang implemenation of OpenACC uses a .td file in the llvm/Frontend
directory to determine appertainment in 4 categories:
-Required: If this list has items in it, the directive requires at least
1 of these be present.
-AllowedExclusive: Items on this list are all allowed, but only 1 from
the list may be here (That is, they are exclusive of eachother).
-AllowedOnce: Items on this list are all allowed, but may not be
duplicated.
Allowed: Items on this list are allowed. Note th at the actual list of
'allowed' is all 4 of these lists together.
This is a draft patch to swtich Clang over to use those tables. Surgery
to get this to happen in Clang Sema was somewhat reasonable. However,
some gaps in the implementations are obvious, the existing clang
implementation disagrees with the Flang interpretation of it. SO, we're
keeping a task list here based on what gets discovered.
Changes to Clang:
- [x] Switch 'directive-kind' enum conversions to use tablegen See
ff1a7bddd9435b6ae2890c07eae60bb07898bbf5
- [x] Switch 'clause-kind' enum conversions to use tablegen See
ff1a7bddd9435b6ae2890c07eae60bb07898bbf5
- [x] Investigate 'parse' test differences to see if any new
disagreements arise.
- [x] Clang/Flang disagree as to whether 'collapse' can be multiple
times on a loop. Further research showed no prose to limit this, and the
comment on the clang implementation said "no good reason to allow", so
no standards justification.
- [x] Clang/Flang disagree whether 'num_gangs' can appear >1 on a
compute/combined construct. This ended up being an unjustified
restriction.
- [x] Clang/Flang disagree as to the list of required clauses on a 'set'
construct. My research shows that Clang mistakenly included 'if' in the
list, and that it should be just 'default_async', 'device_num', and
'device_type'.
- [x] Order of 'at least one of' diagnostic has changed. Tests were
updated.
- [x] Ensure we are properly 'de-aliasing' clause names in appertainment
checks?
- [x] What is 'shortloop'? 'shortloop' seems to be an old non-standard
extension that isn't supported by flang, but is parsed for backward
compat reasons. Clang won't parse, but we at least have a spot for it in
the clause list.
- [x] Implemented proposed change for 'routine' gang/worker/vector/seq.
(see issue 539)
- [x] Implement init/shutdown can only have 1 'if' (see issue 540)
- [x] Clang/Flang disagree as to whether 'tile' is permitted more than
once on a 'loop' or combined constructs (Flang prohibits >1). I see no
justification for this in the standard. EDIT: I found a comment in clang
that I did this to make SOMETHING around duplicate checks easier.
Discussion showed we should actually have a better behavior around
'device_type' and duplicates, so I've since implemented that.
- [x] Clang/Flang disagree whether 'gang', 'worker', or 'vector' may
appear on the same construct as a 'seq' on a 'loop' or 'combined'. There
is prose for this in 2022: (a gang, worker, or vector clause may not
appear if a 'seq' clause appears). EDIT: These don't actually disagree,
but aren't in the .td file, so I restored the existing code to do this.
- [x] Clang/Flang disagree on whether 'bind' can appear >1 on a
'routine'. I believe line 3096 (A bind clause may not bind to a routine
name that has a visible bind clause) makes this limitation (Flang
permits >1 bind). we discussed and decided this should have the same
rules as worker/vector/etc, except without the 'exactly 1 of' rule (so
no dupes in individual sections).
- [x] Clang/Flang disagree on whether 'init'/'shutdown' can have
multiple 'device_num' clauses. I believe there is no supporting prose
for this limitation., We decided that `device_num` should only happen
1x.
- [x] Clang/Flang disagree whether 'num_gangs' can appear >1 on a
'kernels' construct. Line 1173 (On a kernels construct, the num_gangs
clause must have a single argument) justifies limiting on a
per-arguement basis, but doesn't do so for multiple num_gangs clauses.
WE decided to do this with the '1-per-device-type' region for num_gangs,
num_workers, and vector_length, see openacc bug here:
https://github.com/OpenACC/openacc-spec/issues/541
Changes to Flang:
- [x] Clang/Flang disgree on whether 'atomic' can take an 'if' clause.
This was added in OpenACC3.3_Next See #135451
- [x] Clang/Flang disagree on whether 'finalize' can be allowed >1 times
on a 'exit_data' construct. see #135415.
- [x] Clang/Flang disagree whether 'if_present' should be allowed >1
times on a 'host_data'/'update' construct. see #135422
- [x] Clang/Flang disagree on whether 'init'/'shutdown' can have
multiple 'device_type' clauses. I believe there is no supporting prose
for this limitation.
- [ ] SEE change for num_gangs/etc above.
Changes that need discussion/research:
The qualifier allows programmer to directly control how pointers are
signed when they are stored in a particular variable.
The qualifier takes three arguments: the signing key, a flag specifying
whether address discrimination should be used, and a non-negative
integer that is used for additional discrimination.
```
typedef void (*my_callback)(const void*);
my_callback __ptrauth(ptrauth_key_process_dependent_code, 1, 0xe27a) callback;
```
Co-Authored-By: John McCall rjmccall@apple.com
This relands https://github.com/llvm/llvm-project/pull/135119, after
fixing crashes seen in LLDB CI reported here:
https://github.com/llvm/llvm-project/pull/135119#issuecomment-2794910840
Fixes https://github.com/llvm/llvm-project/pull/135119
This changes the TemplateArgument representation to hold a flag
indicating whether a tempalte argument of expression type is supposed to
be canonical or not.
This gets one step closer to solving
https://github.com/llvm/llvm-project/issues/92292
This still doesn't try to unique as-written TSTs. While this would
increase the amount of memory savings and make code dealing with the AST
more well-behaved, profiling template argument lists is still too
expensive for this to be worthwhile, at least for now.
This also fixes the context creation of TSTs, so that they don't in some
cases get incorrectly flagged as sugar over their own canonical form.
This is captured in the test expectation change of some AST dumps.
This fixes some places which were unnecessarily canonicalizing these
TSTs.
This changes the TemplateArgument representation to hold a flag
indicating whether a template argument of expression type is supposed to
be canonical or not.
This gets one step closer to solving
https://github.com/llvm/llvm-project/issues/92292
This still doesn't try to unique as-written TSTs. While this would
increase the amount of memory savings and make code dealing with the AST
more well-behaved, profiling template argument lists is still too
expensive for this to be worthwhile, at least for now. Without this
uniquing, this patch stands neutral in terms of performance impact.
This also fixes the context creation of TSTs, so that they don't in some
cases get incorrectly flagged as sugar over their own canonical form.
This is captured in the test expectation change of some AST dumps.
This fixes some places which were unnecessarily canonicalizing these
TSTs.
Currently when printing a template argument of expression type, the
expression is converted immediately into a string to be sent to the
diagnostic engine, unsing a fake LangOpts.
This makes the expression printing look incorrect for the current
language, besides being inneficient, as we don't actually need to print
the expression if the diagnostic would be ignored.
This fixes a nastiness with the TemplateArgument constructor for
expressions being implicit, and all current users just passing an
expression to a diagnostic were implicitly going through the template
argument path.
The expressions are also being printed unquoted. This will be fixed in a
subsequent patch, as the test churn is much larger.
This fixes partial ordering of pack expansions of NTTPs, by procedding
with the check using the pattern of the NTTP through the rules of the
non-pack case.
This also unifies almost all of the different versions of
FinishTemplateArgumentDeduction (except the function template case).
This makes sure they all follow the rules consistently, instantiating
the parameters and comparing those with the argument.
Fixes#132562
OpenACC 3.3-NEXT has changed the way tags for copy, copyin, copyout, and
create clauses are specified, and end up adding a few extras, and
permits them as a list. This patch encodes these as bitmask enum so
they can be stored succinctly, but still diagnose reasonably.