Generate nuw GEPs for struct member accesses, as inbounds + non-negative
implies nuw.
Regression tests are updated using update scripts where possible, and by
find + replace where not.
Close https://github.com/llvm/llvm-project/issues/91418
Since we load the variable's initializers lazily, it'd be problematic if
the initializers dependent on each other. So here we try to load the
initializers of static variables to make sure they are passed to code
generator by order. If we read any thing interesting, we would consume
that before emitting the current declaration.
Close https://github.com/llvm/llvm-project/issues/91418
Since we load the variable's initializers lazily, it'd be problematic if
the initializers dependent on each other.
For example,
```
SomeType a = ...;
SomeType b = a;
```
Previously, when we load variable `b`, we need to load the initializer,
then we need to load `a`. We can only mark the variable `b` as loaded
after we load `a`. Then `a` is always initialized before `b`. However,
it is not true after we implement lazy loading for initializers.
So here we try to load the initializers of static variables to make sure
they are passed to code generator by order. If we read any thing
interesting, we would consume that before emitting the current
declaration.
A kernel implicit parameter (dyn_ptr) was introduced some time back.
This patch increments the kernel args version for a compiler supporting
dyn_ptr. The version will be used by the runtime to determine whether
the implicit parameter is generated by the compiler. The versioning is
required to support use cases where code generated by an older compiler
is linked with a newer runtime.
If approved, this patch should be backported to release 18.
Summary:
Currently, OpenMP handles the `omp requires` clause by emitting a global
constructor into the runtime for every translation unit that requires
it. However, this is not a great solution because it prevents us from
having a defined order in which the runtime is accessed and used.
This patch changes the approach to no longer use global constructors,
but to instead group the flag with the other offloading entires that we
already handle. This has the effect of still registering each flag per
requires TU, but now we have a single constructor that handles
everything.
This function removes support for the old `__tgt_register_requires` and
replaces it with a warning message. We just had a recent release, and
the OpenMP policy for the past four releases since we switched to LLVM
is that we do not provide strict backwards compatibility between major
LLVM releases now that the library is versioned. This means that a user
will need to recompile if they have an old binary that relied on
`register_requires` having the old behavior. It is important that we
actively deprecate this, as otherwise it would not solve the problem of
having no defined init and shutdown order for `libomptarget`. The
problem of `libomptarget` not having a define init and shutdown order
cascades into a lot of other issues so I have a strong incentive to be
rid of it.
It is worth noting that the current `__tgt_offload_entry` only has space
for a 32-bit integer here. I am planning to overhaul these at some point
as well.
The KernelEnvironment is for compile time information about a kernel. It
allows the compiler to feed information to the runtime. The
KernelLaunchEnvironment is for dynamic information *per* kernel launch.
It allows the rutime to feed information to the kernel that is not
shared with other invocations of the kernel. The first use case is to
replace the globals that synchronize teams reductions with per-launch
versions. This allows concurrent teams reductions. More uses cases will
follow, e.g., per launch memory pools.
Fixes: https://github.com/llvm/llvm-project/issues/70249
We used to have two separate implementations to derive the number of
threads used in a target region. This lead us to sometimes miss out on
user provided thread bounds (num_threads, or thread_limit) when we
looked for "constant default values". If we might miss out on the
presence of those bounds, we cannot set the thread_limit statically
since the runtime will try to honor user input rather than cap it at the
"preferred default". This patch replaces the secondary implementation
with the primary in a mode that will not emit code but just look for the
presence, and potentially upper bounds, of thread limiting clauses.
The runtime test would not pass without this rewrite as we missed some
clauses, set the static limit on the device to the preferred value, but
then violated that value at runtime.
Fixes: https://github.com/llvm/llvm-project/issues/64845
Differential Revision: https://reviews.llvm.org/D158381
This patch introduces per kernel environment. Previously, flags such as execution mode are set through global variables with name like `__kernel_name_exec_mode`. They are accessible on the host by reading the corresponding global variable, but not from the device. Besides, some assumptions, such as no nested parallelism, are not per kernel basis, preventing us applying per kernel optimization in the device runtime.
This is a combination and refinement of patch series D116908, D116909, and D116910.
Depend on D155886.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D142569
This patch introduces per kernel environment. Previously, flags such as execution mode are set through global variables with name like `__kernel_name_exec_mode`. They are accessible on the host by reading the corresponding global variable, but not from the device. Besides, some assumptions, such as no nested parallelism, are not per kernel basis, preventing us applying per kernel optimization in the device runtime.
This is a combination and refinement of patch series D116908, D116909, and D116910.
Depend on D155886.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D142569
This patch renames the `OpenMPIRBuilderConfig` flags to reduce confusion over
their meaning. `IsTargetCodegen` becomes `IsGPU`, whereas `IsEmbedded` becomes
`IsTargetDevice`. The `-fopenmp-is-device` compiler option is also renamed to
`-fopenmp-is-target-device` and the `omp.is_device` MLIR attribute is renamed
to `omp.is_target_device`. Getters and setters of all these renamed properties
are also updated accordingly. Many unit tests have been updated to use the new
names, but an alias for the `-fopenmp-is-device` option is created so that
external programs do not stop working after the name change.
`IsGPU` is set when the target triple is AMDGCN or NVIDIA PTX, and it is only
valid if `IsTargetDevice` is specified as well. `IsTargetDevice` is set by the
`-fopenmp-is-target-device` compiler frontend option, which is only added to
the OpenMP device invocation for offloading-enabled programs.
Differential Revision: https://reviews.llvm.org/D154591
The itanium ABI for certain platforms requires a minimum alignments for
member function pointers to reserve certain bits for distinguishing
virtual and non-virtual functions.
Our implementation of this however depends on the alignment of the
function involved, which may however not reflect the true alignment of
function pointers on certain targets for which the alignment is
independent of the function (e.g. AIX). Worse, the 2-byte alignment
we use may be less than the ABI minimum for the target, and in the case
we are using explicit sections will result in invalid codegen.
This patch attempts to correct this situation by considering the target
alignment of function pointers as part of making the decision about
whether we need to adjust the function alignment to conform to the ABI.
Targets which do not provide the function ptr alignment information
will return a value of 1 when queried and will conservatively retain
the old alignment.
Differential Revision: https://reviews.llvm.org/D147184
This patch prefixes omp outlined helpers and reduction funcs
with the original function's name.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D140722
This patch attempts to prefix omp outlined helpers and reduction funcs
with the original function's name.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D140722
If an inlined kernel is called in a loop, the launch point alloca would
lead to increasing stack usage every time the kernel is invoked. This
could make the application run out of stack space and crash. This problem
is fixed by using the alloca insertion point while creating the alloca instruction.
Fixes https://github.com/llvm/llvm-project/issues/60602
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D145820
We already created a versioned `__tgt_kernel_arguments` struct but it
was only briefly used and its content was passed in isolation anyway.
This makes it hard to add more information in the future. With this
patch we fully embrace the struct as means to pass information from the
compiler to the plugin as part of a kernel launch.
The patch also extends and renames the struct, bumping the version
number to 2. Version 1 entries are auto-upgraded. This is in preparation
for "bare" kernel launches, per kernel dynamic shared memory, CUDA/HIP
lowering, etc.
The `__tgt_target_kernel_nowait` interface was deprecated as it was
unused. Once we actually implement support for something like that, we
can add an appropriate API.
Note: Only plugins with the `launch_kernel` interface are now supported.
That means that a new clang won't be able to use an old runtime.
An old clang can still use the new runtime since the libomptarget
interface did not change.
Differential Revision: https://reviews.llvm.org/D141232
Previously we added the `push_target_tripcount` function to send the
loop tripcount to the device runtime so we knew how to configure the
teams / threads for execute the loop for a teams distribute construct.
This was implemented as a separate function mostly to avoid changing the
interface for backwards compatbility. Now that we've changed it anyway
and the new interface can take an arbitrary number of arguments via the
struct without changing the ABI, we can move this to the new interface.
This will simplify the runtime by removing unnecessary state between
calls.
Depends on D128550
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D128816
This patch changes the code we generate to enter a target region on the
device. This is in-line with the new definition in the runtime that was
added previously. Additionally we implement this in the OpenMPIRBuilder
so that this code can be shared with Flang in the future.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D128550
I used a script to reuse existing check lines rather than creating new
ones. There are more opportunities to reduce the line count but the
"check generated functions" logic makes that somewhat tricky.
FWIW, we really should redo the update script with all these use cases
in mind...
Differential Revision: https://reviews.llvm.org/D128686
This adds -no-opaque-pointers to clang tests whose output will
change when opaque pointers are enabled by default. This is
intended to be part of the migration approach described in
https://discourse.llvm.org/t/enabling-opaque-pointers-by-default/61322/9.
The patch has been produced by replacing %clang_cc1 with
%clang_cc1 -no-opaque-pointers for tests that fail with opaque
pointers enabled. Worth noting that this doesn't cover all tests,
there's a remaining ~40 tests not using %clang_cc1 that will need
a followup change.
Differential Revision: https://reviews.llvm.org/D123115
This patch adds a function attribute to the kernel function generated in
OpenMP offloading. We already create a `nvvm.annotations` metadata node
indicating the kernels present in the program. However, this created
some indirection when trying to identify if a specific function was an
entry. We add a single function attribute for each function now to
simplify this.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D118708
When adding new attributes, existing attributes are dropped. While
this appears to be a longstanding issue, this was highlighted by D105169
which dropped a lot of attributes due to adding the new noundef
attribute.
Ahmed Bougacha (@ab) tracked down the issue and provided the fix in
CGCall.cpp. I bundled it up and updated the tests.
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
This reverts commit aacfbb953eb705af2ecfeb95a6262818fa85dd92.
Revert "Fix lit test failures in CodeGenCoroutines"
This reverts commit 63fff0f5bffe20fa2c84a45a41161afa0043cb34.
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
[Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default (2)
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:
(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.
(2) The remaining tests are updated manually.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108453
Resolve lit failures in clang after 8ca4b3e's land
Fix lit test failures in clang-ppc* and clang-x64-windows-msvc
Fix missing failures in clang-ppc64be* and retry fixing clang-x64-windows-msvc
Fix internal_clone(aarch64) inline assembly
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
This reverts the following commits:
37ca7a795b277c20c02a218bf44052278c03344b
9aa6c72b92b6c89cc6d23b693257df9af7de2d15
705387c5074bcca36d626882462ebbc2bcc3bed4
8ca4b3ef19fe82d7ad6a6e1515317dcc01b41515
80dba72a669b5416e97a42fd2c2a7bc5a6d3f44a
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:
(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.
(2) The remaining tests are updated manually.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108453
This is a follow-up of D110029, which uses bitset to indicate execution mode. This patches makes the changes in the function call.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110279
Parallel regions are outlined as functions with capture variables explicitly generated as distinct parameters in the function's argument list. That complicates the fork_call interface in the OpenMP runtime: (1) the fork_call is variadic since there is a variable number of arguments to forward to the outlined function, (2) wrapping/unwrapping arguments happens in the OpenMP runtime, which is sub-optimal, has been a source of ABI bugs, and has a hardcoded limit (16) in the number of arguments, (3) forwarded arguments must cast to pointer types, which complicates debugging. This patch avoids those issues by aggregating captured arguments in a struct to pass to the fork_call.
Reviewed By: jdoerfert, jhuber6
Differential Revision: https://reviews.llvm.org/D102107
The device runtime contains several calls to __kmpc_get_hardware_num_threads_in_block
and __kmpc_get_hardware_num_blocks. If the thread_limit and the num_teams are constant,
these calls can be folded to the constant value.
In commit D106033 we have the optimization phase. This commit adds the attributes to
the outlined function for the grid size. the two attributes are `omp_target_num_teams` and
`omp_target_thread_limit`. These values are added as long as they are constant.
Two functions are created `getNumThreadsExprForTargetDirective` and
`getNumTeamsExprForTargetDirective`. The original functions `emitNumTeamsForTargetDirective`
and `emitNumThreadsForTargetDirective` identify the expresion and emit the code.
However, for the Device version of the outlined function, we cannot emit anything.
Therefore, this is a first attempt to separate emision of code from deduction of the
values.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106298
Parallel regions are outlined as functions with capture variables explicitly generated as distinct parameters in the function's argument list. That complicates the fork_call interface in the OpenMP runtime: (1) the fork_call is variadic since there is a variable number of arguments to forward to the outlined function, (2) wrapping/unwrapping arguments happens in the OpenMP runtime, which is sub-optimal, has been a source of ABI bugs, and has a hardcoded limit (16) in the number of arguments, (3) forwarded arguments must cast to pointer types, which complicates debugging. This patch avoids those issues by aggregating captured arguments in a struct to pass to the fork_call.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102107
In the spirit of TRegions [0], this patch provides a simpler and uniform
interface for a kernel to set up the device runtime. The OMPIRBuilder is
used for reuse in Flang. A custom state machine will be generated in the
follow up patch.
The "surplus" threads of the "master warp" will not exit early anymore
so we need to use non-aligned barriers. The new runtime will not have an
extra warp but also require these non-aligned barriers.
[0] https://link.springer.com/chapter/10.1007/978-3-030-28596-8_11
This was in parts extracted from D59319.
Reviewed By: ABataev, JonChesterfield
Differential Revision: https://reviews.llvm.org/D101976
Summary:
Memory globalization is required to maintain OpenMP standard semantics for data sharing between
worker and master threads. The GPU cannot share data between its threads so must allocate global or
shared memory to store the data in. Currently this is implemented fully in the frontend using the
`__kmpc_data_sharing_push_stack` and __kmpc_data_sharing_pop_stack` functions to emulate standard
CPU stack sharing. The front-end scans the target region for variables that escape the region and
must be shared between the threads. Each variable then has a field created for it in a global record
type.
This patch replaces this functinality with a single allocation command, effectively mimicing an
alloca instruction for the variables that must be shared between the threads. This will be much
slower than the current solution, but makes it much easier to optimize as we can analyze each
variable independently and determine if it is not captured. In the future, we can replace these
calls with an `alloca` and small allocations can be pushed to shared memory.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D97680
The original change was reverted because it was discovered
that clang mishandles thunks, and they receive wrong
attributes for their this/return types - the ones for the function
they will call, not the ones they have.
While i have tried to fix this in https://reviews.llvm.org/D100388
that patch has been up and stuck for a month now,
with little signs of progress.
So while it will be good to solve this for real,
for now we can simply avoid introducing the bug,
by not annotating this/return for thunks.
This reverts commit 6270b3a1eafaba4279e021418c5a2c5a35abc002,
relanding 0aa0458f1429372038ca6a4edc7e94c96cd9a753.
This patch refactors a subset of Clang OpenMP tests, generating checklines using the update_cc_test_checks script. This refactoring facilitates updating the Clang OpenMP code generation codebase by automating test generation.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D101849
This patch renames the replace-function-regex to replace-value-regex to indicate that the existing regex replacement functionality can replace any IR value besides functions.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D101934
This patch refactors a subset of Clang OpenMP tests, generating checklines using the update_cc_test_checks script. This refactoring facilitates updating the Clang OpenMP code generation codebase by automating test generation.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D101849
This revision simplifies Clang codegen for parallel regions in OpenMP GPU target offloading and corresponding changes in libomptarget: SPMD/non-SPMD parallel calls are unified under a single `kmpc_parallel_51` runtime entry point for parallel regions (which will be commonized between target, host-side parallel regions), data sharing is internalized to the runtime. Tests have been auto-generated using `update_cc_test_checks.py`. Also, the revision contains changes to OpenMPOpt for remark creation on target offloading regions.
Reviewed By: jdoerfert, Meinersbur
Differential Revision: https://reviews.llvm.org/D95976