This is a major change on how we represent nested name qualifications in
the AST.
* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.
This patch offers a great performance benefit.
It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.
This has great results on compile-time-tracker as well:

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.
It has some other miscelaneous drive-by fixes.
About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.
There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.
How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.
The rest and bulk of the changes are mostly consequences of the changes
in API.
PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.
Fixes#136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
Tuple-like types introduce `VarDecl`s in the AST for their "holding
vars", but AST visitors do not visit those. As a result the `VarDecl`
for the holding var is orphaned when trying to retreive its parents.
Fix a `FlowSensitive` test that assumes that only a `BindingDecl` is
introduced with the given name (the matcher now can also reach the
`VarDecl` for the holding var).
A FriendDecl node can have a friend record type that owns a RecordDecl
object. This object is different than the one got from TypeSourceInfo
object of the FriendDecl. When building a ParentMapContext this owned
tag decaration has to be encountered to have the parent set for it.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D131685
Given `int foo, bar;`, TraverseAST reveals this tree:
TranslationUnitDecl
- foo
- bar
Before this patch, with the TraversalScope set to {foo}, TraverseAST yields:
foo
After this patch it yields:
TranslationUnitDecl
- foo
Also, TraverseDecl(TranslationUnitDecl) now respects the traversal scope.
---
The main effect of this today is that clang-tidy checks that match the
translationUnitDecl(), either in order to traverse it or check
parentage, should work.
Differential Revision: https://reviews.llvm.org/D104071
DynTypedNode and ASTNodeKind are implemented as part of the clang AST
library, which uses the main clang namespace. There doesn't seem to be a
need for this extra level of namespacing.
I left behind aliases in the ast_type_traits namespace for out of tree
clients of these APIs. To provide aliases for the enumerators, I used
this pattern:
namespace ast_type_traits {
constexpr TraversalKind TK_AsIs = ::clang::TK_AsIs;
}
I think the typedefs will be useful for migration, but we might be able
to drop these enumerator aliases.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D74499
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This fixes ASTContext's parent map for nodes in such classes (e.g. operator()).
https://bugs.llvm.org/show_bug.cgi?id=39949
This also changes the observed shape of the AST for implicit RAVs.
- this includes AST MatchFinder: cxxRecordDecl() now matches lambda classes,
functionDecl() matches the call operator, and the parent chain is body -> call
operator -> lambda class -> lambdaexpr rather than body -> lambdaexpr.
- this appears not to matter for the ASTImporterLookupTable builder
- this doesn't matter for the other RAVs in-tree.
In order to do this, we remove the TraverseLambdaBody hook. The problem is it's
hard/weird to ensure this hook is called when traversing via the implicit class.
There were just two users of this hook in-tree, who use it to skip bodies.
I replaced these with explicitly traversing the captures only. Another approach
would be recording the bodies when the lambda is visited, and then recognizing
them later.
I'd be open to suggestion on how to preserve this hook, instead.
Reviewers: aaron.ballman, JonasToth
Subscribers: cfe-commits, rsmith, jdennett
Differential Revision: https://reviews.llvm.org/D56444
llvm-svn: 351047
Summary:
The goal is to allow analyses such as clang-tidy checks to run on a
subset of the AST, e.g. "only on main-file decls" for interactive tools.
Today, these become "problematically global" by running RecursiveASTVisitors
rooted at the TUDecl, or by navigating up via ASTContext::getParent().
The scope is restricted using a set of top-level-decls that RecursiveASTVisitors
should be rooted at. This also applies to the visitor that populates the
parent map, and so the top-level-decls are considered to have no parents.
This patch makes the traversal scope a mutable property of ASTContext.
The more obvious way to do this is to pass the top-level decls to
relevant functions directly, but this has some problems:
- it's error-prone: accidentally mixing restricted and unrestricted
scopes is a performance trap. Interleaving multiple analyses is
common (many clang-tidy checks run matchers or RAVs from matcher callbacks)
- it doesn't map well to the actual use cases, where we really do want
*all* traversals to be restricted.
- it involves a lot of plumbing in parts of the code that don't care
about traversals.
This approach was tried out in D54259 and D54261, I wanted to like it
but it feels pretty awful in practice.
Caveats: to get scope-limiting behavior of RecursiveASTVisitors, callers
have to call the new TraverseAST(Ctx) function instead of TraverseDecl(TU).
I think this is an improvement to the API regardless.
Reviewers: klimek, ioeric
Subscribers: mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D54309
llvm-svn: 346847
This relands r250831 after some fixes to shrink the ParentMap overall
with one addtional tweak: nodes with pointer identity (e.g. Decl* and
friends) can be store more efficiently so I put them in a separate map.
All other nodes (so far only TypeLoc and NNSLoc) go in a different map
keyed on DynTypedNode. This further uglifies the code but significantly
reduces memory overhead.
Overall this change still make ParentMap significantly larger but it's
nowhere as bad as before. I see about 25 MB over baseline (pre-r251008)
on X86ISelLowering.cpp. If this becomes an issue we could consider
splitting the maps further as DynTypedNode is still larger (32 bytes)
than a single TypeLoc (16 bytes) but I didn't want to introduce even
more complexity now.
Differential Revision: http://reviews.llvm.org/D14011
llvm-svn: 251101
Putting DynTypedNode in the ParentMap bloats its memory foot print.
Before the void* key had 8 bytes, now we're at 40 bytes per key which
can mean multiple gigabytes increase for large ASTs and this count
doesn't even include all the added TypeLoc nodes. Revert until I come
up with a better data structure.
This reverts commit r250831.
llvm-svn: 250889
Firstly this changes the type of parent map to be keyed on DynTypedNode to
simplify the following changes. This comes with a DenseMapInfo for
DynTypedNode, which is a bit incomplete still and will probably only work
for parentmap right now.
Then the RecursiveASTVisitor in ASTContext is updated and finally
ASTMatchers hasParent and hasAncestor learn about the new functionality.
Now ParentMap is only missing TemplateArgumentLocs and CXXCtorInitializers.
Differential Revision: http://reviews.llvm.org/D13897
llvm-svn: 250831
encodes the canonical rules for LLVM's style. I noticed this had drifted
quite a bit when cleaning up LLVM, so wanted to clean up Clang as well.
llvm-svn: 198686
This does not yet implement the LimitNode approach discussed.
The impact of this is an O(n) in the number of nodes in the AST
reduction of complexity for certain kinds of matchers (as otherwise the
parent map gets recreated for every new MatchFinder).
See FIXMEs in the comments for the direction of future work.
llvm-svn: 176251