Since Ctx &ctx is a member variable,
1f391a75af8685e6bba89421443d72ac6a186599
7a5b9ef54eb96abd8415fd893576c42e51fd95db
e2f0ec3a3a8a2981be8a1aac2004cfb9064c61e8 can be reverted.
Remove the global variable `symtab` and add a member variable
(`std::unique_ptr<SymbolTable>`) to `Ctx` instead.
This is one step toward eliminating global states.
Pull Request: https://github.com/llvm/llvm-project/pull/109612
Ctx was introduced in March 2022 as a more suitable place for such
singletons.
llvm/Support/thread.h includes <thread>, which transitively includes
sstream in libc++ and uses ios_base::in, so we cannot use `#define in ctx.sec`.
`symtab, config, ctx` are now the only variables using
LLVM_LIBRARY_VISIBILITY.
Ctx was introduced in March 2022 as a more suitable place for such
singletons.
We now use default-initialization for `LinkerScript` and should pay
attention to non-class types (e.g. `dot` is initialized by commit
503907dc505db1e439e7061113bf84dd105f2e35).
This was done as an afterthought in c3c9e4531287 without justification.
Nothing relies on it being a specific kind of section, and downstream in
CHERI LLVM we pass a non-GotSection to this function. Thus revert this
overly-restrictive change and allow downstreams to pass other section
types again.
This partially reverts commit c3c9e45312874ff890723f54cabfd41e43b2dbc4.
Ctx was introduced in March 2022 as a more suitable place for such
singletons. ctx's hidden visibility optimizes generated instructions.
This change fixes a pitfall: certain ElfSym members (e.g.
globalOffsetTable, tlsModuleBase) were not zeroed and might be stale
when lld:🧝:link was invoked the second time.
Ctx was introduced in March 2022 as a more suitable place for such
singletons. ctx's hidden visibility optimizes generated instructions.
bufferStart and tlsPhdr, which are not OutputSection, can now be moved
outside of `Out`.
... using the temporary section type code 0x40000020
(`clang -c -Wa,--crel,--allow-experimental-crel`). LLVM will change the
code and break compatibility (Clang and lld of different versions are
not guaranteed to cooperate, unlike other features). CREL with implicit
addends are not supported.
---
Introduce `RelsOrRelas::crels` to iterate over SHT_CREL sections and
update users to check `crels`.
(The decoding performance is critical and error checking is difficult.
Follow `skipLeb` and `R_*LEB128` handling, do not use
`llvm::decodeULEB128`, whichs compiles to a lot of code.)
A few users (e.g. .eh_frame, LLDDwarfObj, s390x) require random access. Pass
`/*supportsCrel=*/false` to `relsOrRelas` to allocate a buffer and
convert CREL to RELA (`relas` instead of `crels` will be used). Since
allocating a buffer increases, the conversion is only performed when
absolutely necessary.
---
Non-alloc SHT_CREL sections may be created in -r and --emit-relocs
links. SHT_CREL and SHT_RELA components need reencoding since
r_offset/r_symidx/r_type/r_addend may change. (r_type may change because
relocations referencing a symbol in a discarded section are converted to
`R_*_NONE`).
* SHT_CREL components: decode with `RelsOrRelas` and re-encode (`OutputSection::finalizeNonAllocCrel`)
* SHT_RELA components: convert to CREL (`relToCrel`). An output section can only have one relocation section.
* SHT_REL components: print an error for now.
SHT_REL to SHT_CREL conversion for -r/--emit-relocs is complex and
unsupported yet.
Link: https://discourse.llvm.org/t/rfc-crel-a-compact-relocation-format-for-elf/77600
Pull Request: https://github.com/llvm/llvm-project/pull/98115
GNU ld since 2.41 supports this option, which is mildly useful. It omits
the section header table and non-ALLOC sections (including
.symtab/.strtab (--strip-all)).
This option is simple to implement and might be used by LLDB to test
program headers parsing without the section header table (#100900).
-z sectionheader, which is the default, is also added.
Pull Request: https://github.com/llvm/llvm-project/pull/101286
`.rela.dyn` is currently created outside of the `config->hasDynSymTab`
condition. In relocatable links, `.rela.dyn` will be discarded by
`removeUnusedSyntheticSections`. It's better than suppress the creation
so that .relr.auth.dyn support (#96496) does not need to adjust
`removeUnusedSyntheticSections`.
When the address pointer encoding in FDEs uses
DW_EH_PE_absptr|DW_EH_PE_sdata4, the address is sign-extended to 64-bit
by `readFdeAddr`. We should truncate the address to 32-bit for
ELFCLASS32. Otherwise, `isInt<32>(pc - va)` could be false, leading to a
spurious error in `getFdeData`.
In LLVM, this appears a MIPS-specific issue.
Fix#88852
Pull Request: https://github.com/llvm/llvm-project/pull/92438
When enabled, input sections that would otherwise overflow a memory
region are instead spilled to the next matching output section.
This feature parallels the one in GNU LD, but there are some differences
from its documented behavior:
- /DISCARD/ only matches previously-unmatched sections (i.e., the flag
does not affect it).
- If a section fails to fit at any of its matches, the link fails
instead of discarding the section.
- The flag --enable-non-contiguous-regions-warnings is not implemented,
as it exists to warn about such occurrences.
The implementation places stubs at possible spill locations, and
replaces them with the original input section when effecting spills.
Spilling decisions occur after address assignment. Sections are spilled
in reverse order of assignment, with each spill naively decreasing the
size of the affected memory regions. This continues until the memory
regions are brought back under size. Spilling anything causes another
pass of address assignment, and this continues to fixed point.
Spilling after rather than during assignment allows the algorithm to
consider the size effects of unspillable input sections that appear
later in the assignment. Otherwise, such sections (e.g. thunks) may
force an overflow, even if spilling something earlier could have avoided
it.
A few notable feature interactions occur:
- Stubs affect alignment, ONLY_IF_RO, etc, broadly as if a copy of the
input section were actually placed there.
- SHF_MERGE synthetic sections use the spill list of their first
contained input section (the one that gives the section its name).
- ICF occurs oblivious to spill sections; spill lists for merged-away
sections become inert and are removed after assignment.
- SHF_LINK_ORDER and .ARM.exidx are ordered according to the final
section ordering, after all spilling has completed.
- INSERT BEFORE/AFTER and OVERWRITE_SECTIONS are explicitly disallowed.
When enabled, input sections that would otherwise overflow a memory
region are instead spilled to the next matching output section.
This feature parallels the one in GNU LD, but there are some differences
from its documented behavior:
- /DISCARD/ only matches previously-unmatched sections (i.e., the flag
does not affect it).
- If a section fails to fit at any of its matches, the link fails
instead of discarding the section.
- The flag --enable-non-contiguous-regions-warnings is not implemented,
as it exists to warn about such occurrences.
The implementation places stubs at possible spill locations, and
replaces them with the original input section when effecting spills.
Spilling decisions occur after address assignment. Sections are spilled
in reverse order of assignment, with each spill naively decreasing the
size of the affected memory regions. This continues until the memory
regions are brought back under size. Spilling anything causes another
pass of address assignment, and this continues to fixed point.
Spilling after rather than during assignment allows the algorithm to
consider the size effects of unspillable input sections that appear
later in the assignment. Otherwise, such sections (e.g. thunks) may
force an overflow, even if spilling something earlier could have avoided
it.
A few notable feature interactions occur:
- Stubs affect alignment, ONLY_IF_RO, etc, broadly as if a copy of the
input section were actually placed there.
- SHF_MERGE synthetic sections use the spill list of their first
contained input section (the one that gives the section its name).
- ICF occurs oblivious to spill sections; spill lists for merged-away
sections become inert and are removed after assignment.
- SHF_LINK_ORDER and .ARM.exidx are ordered according to the final
section ordering, after all spilling has completed.
- INSERT BEFORE/AFTER and OVERWRITE_SECTIONS are explicitly disallowed.
`clang -g -gpubnames` (with optional -gsplit-dwarf) creates the
`.debug_names` section ("per-CU" index). By default lld concatenates
input `.debug_names` sections into an output `.debug_names` section.
LLDB can consume the concatenated section but the lookup performance is
not good.
This patch adds --debug-names to create a per-module index by combining
the per-CU indexes into a single index that covers the entire load
module. The produced `.debug_names` is a replacement for `.gdb_index`.
Type units (-fdebug-types-section) are not handled yet.
Co-authored-by: Fangrui Song <i@maskray.me>
---------
Co-authored-by: Fangrui Song <i@maskray.me>