This PR changes the sanitizer passes to be idempotent.
When any sanitizer pass is run after it has already been run before,
double instrumentation is seen in the resulting IR. This happens because
there is no check in the pass, to verify if IR has been instrumented
before.
This PR checks if "nosanitize_*" module flag is already present and if
true, return early without running the pass again.
Generate nuw GEPs for struct member accesses, as inbounds + non-negative
implies nuw.
Regression tests are updated using update scripts where possible, and by
find + replace where not.
Remove support for the icmp and fcmp constant expressions.
This is part of:
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179
As usual, many of the updated tests will no longer test what they were
originally intended to -- this is hard to preserve when constant
expressions get removed, and in many cases just impossible as the
existence of a specific kind of constant expression was the cause of the
issue in the first place.
`disable_sanitizer_instrumetation` is attached to functions that shall
not be instrumented e.g. ifunc resolver because those run before
everything is initialised.
Some sanitizer already handles this attribute, this patch adds it to
DataFLow and Coverage too.
D97409 added injectMetadataGlobals to differentiate the shadow mode.
This feature has been unused and is unneeded after D103745 removed fast16 mode.
Reviewed By: browneee
Differential Revision: https://reviews.llvm.org/D140797
Add `zeroext` attribute for below callbacks' first parameter
(8bit shadow variable arguments) to conform to many platforms'
ABI calling convention and some compiler behavior.
- __dfsan_load_callback
- __dfsan_store_callback
- __dfsan_cmp_callback
- __dfsan_conditional_callback
- __dfsan_conditional_callback_origin
- __dfsan_reaches_function_callback
- __dfsan_reaches_function_callback_origin
The type of these callbacks' first parameter is u8 (see the
definition of `dfsan_label`). First, many platforms' ABI
requires unsigned integer data types (except unsigned int)
are zero-extended when stored in general-purpose register.
Second, the problem is that compiler optimization may assume
the arguments are zero-extended and, if not, misbehave, e.g.
it uses an `i8` argument to index into a jump table. If the
argument has non-zero high bits, the output executable may
crash at run-time. So we need to add the `zeroext` attribute
when declaring and calling them.
Reviewed By: browneee, MaskRay
Differential Revision: https://reviews.llvm.org/D140689
This switches everything to use the memory attribute proposed in
https://discourse.llvm.org/t/rfc-unify-memory-effect-attributes/65579.
The old argmemonly, inaccessiblememonly and inaccessiblemem_or_argmemonly
attributes are dropped. The readnone, readonly and writeonly attributes
are restricted to parameters only.
The old attributes are auto-upgraded both in bitcode and IR.
The bitcode upgrade is a policy requirement that has to be retained
indefinitely. The IR upgrade is mainly there so it's not necessary
to update all tests using memory attributes in this patch, which
is already large enough. We could drop that part after migrating
tests, or retain it longer term, to make it easier to import IR
from older LLVM versions.
High-level Function/CallBase APIs like doesNotAccessMemory() or
setDoesNotAccessMemory() are mapped transparently to the memory
attribute. Code that directly manipulates attributes (e.g. via
AttributeList) on the other hand needs to switch to working with
the memory attribute instead.
Differential Revision: https://reviews.llvm.org/D135780
This enabled opaque pointers by default in LLVM. The effect of this
is twofold:
* If IR that contains *neither* explicit ptr nor %T* types is passed
to tools, we will now use opaque pointer mode, unless
-opaque-pointers=0 has been explicitly passed.
* Users of LLVM as a library will now default to opaque pointers.
It is possible to opt-out by calling setOpaquePointers(false) on
LLVMContext.
A cmake option to toggle this default will not be provided. Frontends
or other tools that want to (temporarily) keep using typed pointers
should disable opaque pointers via LLVMContext.
Differential Revision: https://reviews.llvm.org/D126689
This can cause crashes by accidentally optimizing out checks for
extern_weak_func != nullptr, when replaced with a known-not-null wrapper.
This solution isn't perfect (only avoids replacement on specific patterns)
but should address common cases.
Internal reference: b/185245029
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D123701
A test for the new pass manager was missed from the original diff D115317.
Reviewed By: browneee
Differential Revision: https://reviews.llvm.org/D115477
This diff adds "dfsan-ignore-personality-routine" flag, which makes
the dfsan pass to not to generate wrappers for the personality functions if the
function is marked uninstrumented.
This flag is to support dfsan with the cases where the exception handling
routines cannot be instrumented (e.g. use the prebuilt version of c++ standard
library). When the personality function cannot be instrumented it is supposed
to be marked "uninstrumented" from the abi list file. While DFSan generates a
wrapper function for uninstrumented functions, it cannot cannot generate a
valid wrapper for vararg functions, and indirect invocation of vararg function
wrapper terminates the execution of dfsan-instrumented programs. This makes
invocation of personality routine to crash the program, because 1) clang adds a
declaration of personality functions as a vararg function with no fixed
argument, and 2) personality routines are always called indirectly.
To address this issue, the flag introduced in this diff makes dfsan to not to
instrument the personality function. This is not the "correct" solution in the
sense that return value label from the personality function will be undefined.
However, in practice, if the exception handling routines are uninstrumented we
wouldn't expect precise label propagation around them, and it would be more
beneficial to make the rest of the program run without termination.
Reviewed By: browneee
Differential Revision: https://reviews.llvm.org/D115317
This allows application code checks if origin tracking is on before
printing out traces.
-dfsan-track-origins can be 0,1,2.
The current code only distinguishes 1 and 2 in compile time, but not at runtime.
Made runtime distinguish 1 and 2 too.
Reviewed By: browneee
Differential Revision: https://reviews.llvm.org/D105128
These other platforms are unsupported and untested.
They could be re-added later based on MSan code.
Reviewed By: gbalats, stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D104481
The current naming scheme adds the `dfs$` prefix to all
DFSan-instrumented functions. This breaks mangling and prevents stack
trace printers and other tools from automatically demangling function
names.
This new naming scheme is mangling-compatible, with the `.dfsan`
suffix being a vendor-specific suffix:
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling-structure
With this fix, demangling utils would work out-of-the-box.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D104494
These other platforms are unsupported and untested.
They could be re-added later based on MSan code.
Reviewed By: gbalats, stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D104481
Complete support for fast8:
- amend shadow size and mapping in runtime
- remove fast16 mode and -dfsan-fast-16-labels flag
- remove legacy mode and make fast8 mode the default
- remove dfsan-fast-8-labels flag
- remove functions in dfsan interface only applicable to legacy
- remove legacy-related instrumentation code and tests
- update documentation.
Reviewed By: stephan.yichao.zhao, browneee
Differential Revision: https://reviews.llvm.org/D103745
Needs to be discussed more.
This reverts commit 255a5c1baa6020c009934b4fa342f9f6dbbcc46
This reverts commit df2056ff3730316f376f29d9986c9913b95ceb1
This reverts commit faff79b7ca144e505da6bc74aa2b2f7cffbbf23
This reverts commit d2a9020785c6e02afebc876aa2778fa64c5cafd
Calls must properly match argument ABI attributes with the callee.
Found via D103412.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D103414
Without this change, a callsite like:
[[clang::musttail]] return func_call(x);
will cause an error like:
fatal error: error in backend: failed to perform tail call elimination
on a call site marked musttail
due to DFSan inserting instrumentation between the musttail call and
the return.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D103542
DFSan has flags to control flows between pointers and objects referred
by pointers. For example,
a = *p;
L(a) = L(*p) when -dfsan-combine-pointer-labels-on-load = false
L(a) = L(*p) + L(p) when -dfsan-combine-pointer-labels-on-load = true
*p = b;
L(*p) = L(b) when -dfsan-combine-pointer-labels-on-store = false
L(*p) = L(b) + L(p) when -dfsan-combine-pointer-labels-on-store = true
The question is what to do with p += c.
In practice we found many confusing flows if we propagate labels from c
to p. So a new flag works like this
p += c;
L(p) = L(p) when -dfsan-propagate-via-pointer-arithmetic = false
L(p) = L(p) + L(c) when -dfsan-propagate-via-pointer-arithmetic = true
Reviewed-by: gbalats
Differential Revision: https://reviews.llvm.org/D103176
Since d6de1e1a71406c75a4ea4d5a2fe84289f07ea3a1, no attributes is quivalent to
setting attribute to false.
This is a preliminary commit for https://reviews.llvm.org/D99080
The problem is the following. With fast8, we broke an important
invariant when loading shadows. A wide shadow of 64 bits used to
correspond to 4 application bytes with fast16; so, generating a single
load was okay since those 4 application bytes would share a single
origin. Now, using fast8, a wide shadow of 64 bits corresponds to 8
application bytes that should be backed by 2 origins (but we kept
generating just one).
Let’s say our wide shadow is 64-bit and consists of the following:
0xABCDEFGH. To check if we need the second origin value, we could do
the following (on the 64-bit wide shadow) case:
- bitwise shift the wide shadow left by 32 bits (yielding 0xEFGH0000)
- push the result along with the first origin load to the shadow/origin vectors
- load the second 32-bit origin of the 64-bit wide shadow
- push the wide shadow along with the second origin to the shadow/origin vectors.
The combineOrigins would then select the second origin if the wide
shadow is of the form 0xABCDE0000. The tests illustrate how this
change affects the generated bitcode.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D101584
The first version of origin tracking tracks only memory stores. Although
this is sufficient for understanding correct flows, it is hard to figure
out where an undefined value is read from. To find reading undefined values,
we still have to do a reverse binary search from the last store in the chain
with printing and logging at possible code paths. This is
quite inefficient.
Tracking memory load instructions can help this case. The main issues of
tracking loads are performance and code size overheads.
With tracking only stores, the code size overhead is 38%,
memory overhead is 1x, and cpu overhead is 3x. In practice #load is much
larger than #store, so both code size and cpu overhead increases. The
first blocker is code size overhead: link fails if we inline tracking
loads. The workaround is using external function calls to propagate
metadata. This is also the workaround ASan uses. The cpu overhead
is ~10x. This is a trade off between debuggability and performance,
and will be used only when debugging cases that tracking only stores
is not enough.
Reviewed By: gbalats
Differential Revision: https://reviews.llvm.org/D100967
This is only adding support to the dfsan instrumentation pass but not
to the runtime.
Added more RUN lines for testing: for each instrumentation test that
had a -dfsan-fast-16-labels invocation, a new invocation was added
using fast8.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D98734
Remove hard-coded shadow width references. Separate CHECK lines that only apply to fast16 mode.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D98308
This removes hard-coded shadow width references and adds more RUN
lines to increase test coverage under different options (fast16 labels
mode).
Also, shortens the test by unifying common lines under both combine- and no-combine-ptr-label options.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D98227