There is a lot of redundant code that needs to be modified when new
Hexagon versions are added. Reduce the amount of this redundancy.
- compute ELF flags and attributes based on version feature names;
- simplify EnableHVX option handling by using arch features instead of
arch version enums;
- simplify completeHVXFeatures() by using features;
- delete several unused or redundant functions and constants:
isCPUValid, getCpu, getHexagonCPUSuffix;
- do not set HexagonArchVersion in initializeSubtargetDependencies, it
is set in ParseSubtargetFeatures;
Signed-off-by: Alexey Karyakin <akaryaki@quicinc.com>
This both reapplies #118734, the initial attempt at this, and updates it
significantly.
First, it uses the newly added `StringTable` abstraction for string
tables, and simplifies the construction to build the string table and
info arrays separately. This should reduce any `constexpr` compile time
memory or CPU cost of the original PR while significantly improving the
APIs throughout.
It also restructures the builtins to support sharding across several
independent tables. This accomplishes two improvements from the
original PR:
1) It improves the APIs used significantly.
2) When builtins are defined from different sources (like SVE vs MVE in
AArch64), this allows each of them to build their own string table
independently rather than having to merge the string tables and info
structures.
3) It allows each shard to factor out a common prefix, often cutting the
size of the strings needed for the builtins by a factor two.
The second point is important both to allow different mechanisms of
construction (for example a `.def` file and a tablegen'ed `.inc` file,
or different tablegen'ed `.inc files), it also simply reduces the sizes
of these tables which is valuable given how large they are in some
cases. The third builds on that size reduction.
Initially, we use this new sharding rather than merging tables in
AArch64, LoongArch, RISCV, and X86. Mostly this helps ensure the system
works, as without further changes these still push scaling limits.
Subsequent commits will more deeply leverage the new structure,
including using the prefix capabilities which cannot be easily factored
out here and requires deep changes to the targets.
Reverts llvm/llvm-project#118734
There are currently some specific versions of MSVC that are miscompiling
this code (we think). We don't know why as all the other build bots and
at least some folks' local Windows builds work fine.
This is a candidate revert to help the relevant folks catch their
builders up and have time to debug the issue. However, the expectation
is to roll forward at some point with a workaround if at all possible.
The Clang binary (and any binary linking Clang as a library), when built
using PIE, ends up with a pretty shocking number of dynamic relocations
to apply to the executable image: roughly 400k.
Each of these takes up binary space in the executable, and perhaps most
interestingly takes start-up time to apply the relocations.
The largest pattern I identified were the strings used to describe
target builtins. The addresses of these string literals were stored into
huge arrays, each one requiring a dynamic relocation. The way to avoid
this is to design the target builtins to use a single large table of
strings and offsets within the table for the individual strings. This
switches the builtin management to such a scheme.
This saves over 100k dynamic relocations by my measurement, an over 25%
reduction. Just looking at byte size improvements, using the `bloaty`
tool to compare a newly built `clang` binary to an old one:
```
FILE SIZE VM SIZE
-------------- --------------
+1.4% +653Ki +1.4% +653Ki .rodata
+0.0% +960 +0.0% +960 .text
+0.0% +197 +0.0% +197 .dynstr
+0.0% +184 +0.0% +184 .eh_frame
+0.0% +96 +0.0% +96 .dynsym
+0.0% +40 +0.0% +40 .eh_frame_hdr
+114% +32 [ = ] 0 [Unmapped]
+0.0% +20 +0.0% +20 .gnu.hash
+0.0% +8 +0.0% +8 .gnu.version
+0.9% +7 +0.9% +7 [LOAD #2 [R]]
[ = ] 0 -75.4% -3.00Ki .relro_padding
-16.1% -802Ki -16.1% -802Ki .data.rel.ro
-27.3% -2.52Mi -27.3% -2.52Mi .rela.dyn
-1.6% -2.66Mi -1.6% -2.66Mi TOTAL
```
We get a 16% reduction in the `.data.rel.ro` section, and nearly 30%
reduction in `.rela.dyn` where those reloctaions are stored.
This is also visible in my benchmarking of binary start-up overhead at
least:
```
Benchmark 1: ./old_clang --version
Time (mean ± σ): 17.6 ms ± 1.5 ms [User: 4.1 ms, System: 13.3 ms]
Range (min … max): 14.2 ms … 22.8 ms 162 runs
Benchmark 2: ./new_clang --version
Time (mean ± σ): 15.5 ms ± 1.4 ms [User: 3.6 ms, System: 11.8 ms]
Range (min … max): 12.4 ms … 20.3 ms 216 runs
Summary
'./new_clang --version' ran
1.13 ± 0.14 times faster than './old_clang --version'
```
We get about 2ms faster `--version` runs. While there is a lot of noise
in binary execution time, this delta is pretty consistent, and
represents over 10% improvement. This is particularly interesting to me
because for very short source files, repeatedly starting the `clang`
binary is actually the dominant cost. For example, `configure` scripts
running against the `clang` compiler are slow in large part because of
binary start up time, not the time to process the actual inputs to the
compiler.
----
This PR implements the string tables using `constexpr` code and the
existing macro system. I understand that the builtins are moving towards
a TableGen model, and if complete that would provide more options for
modeling this. Unfortunately, that migration isn't complete, and even
the parts that are migrated still rely on the ability to break out of
the TableGen model and directly expand an X-macro style `BUILTIN(...)`
textually. I looked at trying to complete the move to TableGen, but it
would both require the difficult migration of the remaining targets, and
solving some tricky problems with how to move away from any macro-based
expansion.
I was also able to find a reasonably clean and effective way of doing
this with the existing macros and some `constexpr` code that I think is
clean enough to be a pretty good intermediate state, and maybe give a
good target for the eventual TableGen solution. I was also able to
factor the macros into set of consistent patterns that avoids a
significant regression in overall boilerplate.
This support was originally added in 72c373bfdc98 ([C++17] Support
__GCC_[CON|DE]STRUCTIVE_SIZE (#89446), 2024-04-26). We're overriding the
values for Hexagon here.
Signed-off-by: Brian Cain <bcain@quicinc.com>
Change the return type of `getClobbers` function from `const char*`
to `std::string_view`. Update the function usages in CodeGen module.
The reasoning of these changes is to remove unsafe `const char*`
strings and prevent unnecessary allocations for constructing the
`std::string` in usages of `getClobbers()` function.
Differential Revision: https://reviews.llvm.org/D148799
This avoids recomputing string length that is already known at compile time.
It has a slight impact on preprocessing / compile time, see
https://llvm-compile-time-tracker.com/compare.php?from=3f36d2d579d8b0e8824d9dd99bfa79f456858f88&to=e49640c507ddc6615b5e503144301c8e41f8f434&stat=instructions:u
This a recommit of e953ae5bbc313fd0cc980ce021d487e5b5199ea4 and the subsequent fixes caa713559bd38f337d7d35de35686775e8fb5175 and 06b90e2e9c991e211fecc97948e533320a825470.
The above patchset caused some version of GCC to take eons to compile clang/lib/Basic/Targets/AArch64.cpp, as spotted in aa171833ab0017d9732e82b8682c9848ab25ff9e.
The fix is to make BuiltinInfo tables a compilation unit static variable, instead of a private static variable.
Differential Revision: https://reviews.llvm.org/D139881
WG14 adopted the _ExtInt feature from Clang for C23, but renamed the
type to be _BitInt. This patch does the vast majority of the work to
rename _ExtInt to _BitInt, which accounts for most of its size. The new
type is exposed in older C modes and all C++ modes as a conforming
extension. However, there are functional changes worth calling out:
* Deprecates _ExtInt with a fix-it to help users migrate to _BitInt.
* Updates the mangling for the type.
* Updates the documentation and adds a release note to warn users what
is going on.
* Adds new diagnostics for use of _BitInt to call out when it's used as
a Clang extension or as a pre-C23 compatibility concern.
* Adds new tests for the new diagnostic behaviors.
I want to call out the ABI break specifically. We do not believe that
this break will cause a significant imposition for early adopters of
the feature, and so this is being done as a full break. If it turns out
there are critical uses where recompilation is not an option for some
reason, we can consider using ABI tags to ease the transition.
This is the result of an audit of all of the ABIs in clang to implement
and enable the type for those targets.
Additionally, this finds an issue with integer-promotion passing for a
few platforms when using _ExtInt of < int, so this also corrects that
resulting in signext/zeroext being on a params of those types in some
platforms.
Differential Revisions: https://reviews.llvm.org/D79118
This commit removes the artificial types <512 x i1> and <1024 x i1>
from HVX intrinsics, and makes v512i1 and v1024i1 no longer legal on
Hexagon.
It may cause existing bitcode files to become invalid.
* Converting between vector predicates and vector registers must be
done explicitly via vandvrt/vandqrt instructions (their intrinsics),
i.e. (for 64-byte mode):
%Q = call <64 x i1> @llvm.hexagon.V6.vandvrt(<16 x i32> %V, i32 -1)
%V = call <16 x i32> @llvm.hexagon.V6.vandqrt(<64 x i1> %Q, i32 -1)
The conversion intrinsics are:
declare <64 x i1> @llvm.hexagon.V6.vandvrt(<16 x i32>, i32)
declare <128 x i1> @llvm.hexagon.V6.vandvrt.128B(<32 x i32>, i32)
declare <16 x i32> @llvm.hexagon.V6.vandqrt(<64 x i1>, i32)
declare <32 x i32> @llvm.hexagon.V6.vandqrt.128B(<128 x i1>, i32)
They are all pure.
* Vector predicate values cannot be loaded/stored directly. This directly
reflects the architecture restriction. Loading and storing or vector
predicates must be done indirectly via vector registers and explicit
conversions via vandvrt/vandqrt instructions.
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch has the following changes
A new flag "-mhvx-length={64B|128B}" is introduced to specify the length of the vector.
Previously we have used "-mhvx-double" for 128 Bytes. This adds the target-feature "+hvx-length{64|128}b"
The "-mhvx" flag must be provided on command line to enable HVX for Hexagon. If no -mhvx-length flag
is specified, a default length is picked from the arch mentioned in this priority order from either -mhvx=vxx
or -mcpu. For v60 and v62 the default length is 64 Byte. For unknown versions, the length is 128 Byte. The
-mhvx flag adds the target-feature "+hvxv{hvx_version}"
The 64 Byte mode is soon going to be deprecated. A warning is emitted if 64 Byte is enabled. A warning is
still emitted for the default 64 Byte as well. This warning can be suppressed with a -Wno flag.
The "-mhvx-double" and "-mno-hvx-double" flags are deprecated. A warning is emitted if the driver sees
them on commandline. "-mhvx-double" is an alias to "-mhvx-length=128B"
The compilation will error out if -mhvx-length is specified with out an -mhvx/-mhvx= flag
The macro HVX_LENGTH is defined and is set to the length of the vector.
Eg: #define HVX_LENGTH 64
The macro HVX_ARCH is defined and is set to the version of the HVX.
Eg: #define HVX_ARCH 62
Differential Revision: https://reviews.llvm.org/D38852
llvm-svn: 316102
Targets.cpp is getting unwieldy, and even minor changes cause the entire thing
to cause recompilation for everyone. This patch bites the bullet and breaks
it up into a number of files.
I tended to keep function definitions in the class declaration unless it
caused additional includes to be necessary. In those cases, I pulled it
over into the .cpp file. Content is copy/paste for the most part,
besides includes/format/etc.
Differential Revision: https://reviews.llvm.org/D35701
llvm-svn: 308791