In relation to the approval and merge of the
[PRIF](https://github.com/llvm/llvm-project/pull/76088) specification
about multi-image features in Flang, here is a first PR to add support
for the `-fcoarray` compilation flag and the initialization of the PRIF
environment.
Other PRs will follow for adding support of lowering to PRIF.
Both clang and gfortran support the -fopenmp-simd flag, which enables
OpenMP support only for simd constructs, while disabling the rest of
OpenMP.
Implement the appropriate parse tree rewriting to remove non-SIMD OpenMP
constructs at the parsing stage.
Add a new SimdOnly flang OpenMP IR pass which rewrites generated OpenMP
FIR to handle untangling composite simd constructs, and clean up OpenMP
operations leftover after the parse tree rewriting stage.
With this approach, the two parts of the logic required to make the flag
work can be self-contained within the parse tree rewriter and the MLIR
pass, respectively. It does not need to be implemented within the core
lowering logic itself.
The flag is expected to have no effect if -fopenmp is passed explicitly,
and is only expected to remove OpenMP constructs, not things like OpenMP
library functions calls. This matches the behaviour of other compilers.
---------
Signed-off-by: Kajetan Puchalski <kajetan.puchalski@arm.com>
This patch adds an option to select the method for computing complex
number division. It uses `LoweringOptions` to determine whether to lower
complex division to a runtime function call or to MLIR's `complex.div`,
and `CodeGenOptions` to select the computation algorithm for
`complex.div`. The available option values and their corresponding
algorithms are as follows:
- `full`: Lower to a runtime function call. (Default behavior)
- `improved`: Lower to `complex.div` and expand to Smith's algorithm.
- `basic`: Lower to `complex.div` and expand to the algebraic algorithm.
See also the discussion in the following discourse post:
https://discourse.llvm.org/t/optimization-of-complex-number-division/83468
---------
Co-authored-by: Tarun Prabhu <tarunprabhu@gmail.com>
`-fveclib=libmvec` for AArch64 (NEON and SVE) in Clang was supported by
#143696. This patch does the same for Flang.
Vector functions defined in `libmvec` are used for the following Fortran
operator and functions currently.
- Power operator (`**`)
- Fortran intrinsic functions listed below for `real(kind=4)` and
`real(kind=8)` (including their coresponding specific intrinsic
functions)
- Fortran intrinsic functions which are expanded using functions listed
below (for example, `sin` for `complex(kind=8)`)
```
sin
tan
cos
asin
acos
atan (both atan(x) and atan(y, x))
atan2
cosh
tanh
asinh
acosh
atanh
erf
erfc
exp
log
log10
```
As with Clang/AArch64, glibc 2.40 or higher is required to use all these
functions.
This PR resubmits the changes from #136098, which was previously
reverted due to a build failure during the linking stage:
```
undefined reference to `llvm::DebugInfoCorrelate'
undefined reference to `llvm::ProfileCorrelate'
```
The root cause was that `llvm/lib/Frontend/Driver/CodeGenOptions.cpp`
references symbols from the `Instrumentation` component, but the
`LINK_COMPONENTS` in the `llvm/lib/Frontend/CMakeLists.txt` for
`LLVMFrontendDriver` did not include it. As a result, linking failed in
configurations where these components were not transitively linked.
### Fix:
This updated patch explicitly adds `Instrumentation` to
`LINK_COMPONENTS` in the relevant `llvm/lib/Frontend/CMakeLists.txt`
file to ensure the required symbols are properly resolved.
---------
Co-authored-by: ict-ql <168183727+ict-ql@users.noreply.github.com>
Co-authored-by: Chyaka <52224511+liliumshade@users.noreply.github.com>
Co-authored-by: Tarun Prabhu <tarunprabhu@gmail.com>
This patch adds support for the -mrecip command line option. The parsing
of this options is equivalent to Clang's and it is implemented by
setting the "reciprocal-estimates" function attribute.
Also move the ParseMRecip(...) function to CommonArgs, so that Flang is
able to make use of it as well.
---------
Co-authored-by: Cameron McInally <cmcinally@nvidia.com>
This patch moves the CommonArgs utilities into a location visible by the
Frontend Drivers, so that the Frontend Drivers may share option parsing
code with the Compiler Driver. This is useful when the Frontend Drivers
would like to verify that their incoming options are well-formed and
also not reinvent the option parsing wheel.
We already see code in the Clang/Flang Drivers that is parsing and
verifying its incoming options. E.g. OPT_ffp_contract. This option is
parsed in the Compiler Driver, Clang Driver, and Flang Driver, all with
slightly different parsing code. It would be nice if the Frontend
Drivers were not required to duplicate this Compiler Driver code. That
way there is no/low maintenance burden on keeping all these parsing
functions in sync.
Along those lines, the Frontend Drivers will now have a useful mechanism
to verify their incoming options are well-formed. Currently, the
Frontend Drivers trust that the Compiler Driver is not passing back junk
in some cases. The Language Drivers may even accept junk with no error
at all. E.g.:
`clang -cc1 -mprefer-vector-width=junk test.c'
With this patch, we'll now be able to tighten up incomming options to
the Frontend drivers in a lightweight way.
---------
Co-authored-by: Cameron McInally <cmcinally@nvidia.com>
Co-authored-by: Shafik Yaghmour <shafik.yaghmour@intel.com>
This patch implements IR-based Profile-Guided Optimization support in
Flang through the following flags:
- `-fprofile-generate` for instrumentation-based profile generation
- `-fprofile-use=<dir>/file` for profile-guided optimization
Resolves#74216 (implements IR PGO support phase)
**Key changes:**
- Frontend flag handling aligned with Clang/GCC semantics
- Instrumentation hooks into LLVM PGO infrastructure
- LIT tests verifying:
- Instrumentation metadata generation
- Profile loading from specified path
- Branch weight attribution (IR checks)
**Tests:**
- Added gcc-flag-compatibility.f90 test module verifying:
- Flag parsing boundary conditions
- IR-level profile annotation consistency
- Profile input path normalization rules
- SPEC2006 benchmark results will be shared in comments
For details on LLVM's PGO framework, refer to [Clang PGO
Documentation](https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization).
This implementation was developed by [XSCC Compiler
Team](https://github.com/orgs/OpenXiangShan/teams/xscc).
---------
Co-authored-by: ict-ql <168183727+ict-ql@users.noreply.github.com>
Co-authored-by: Tom Eccles <t@freedommail.info>
These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
There are various places where the -fveclib option is parsed to
determine whether its value is correct for the target. Unfortunately
these places assume case-insensitivity and subsequently use "LIBMVEC"
where the driver mandates "libmvec", thus rendering the diagnosistic
useless.
This PR corrects the naming along with similar incorrect uses within the
test files.
This patch updates flang to follow clang's behavior when processing the
`-mcode-object-version` option.
It is now used to populate an LLVM module flag called
`amdhsa_code_object_version` expected by the backend and also updates
the driver to add the `--amdhsa-code-object-version` option to the
frontend invocation for device compilation of AMDGPU targets.
This PR starts the effort to upstream AMD's internal implementation of
`do concurrent` to OpenMP mapping. This replaces #77285 since we
extended this WIP quite a bit on our fork over the past year.
An important part of this PR is a document that describes the current
status downstream, the upstreaming status, and next steps to make this
pass much more useful.
In addition to this document, this PR also contains the skeleton of the
pass (no useful transformations are done yet) and some testing for the
added command line options.
This looks like a huge PR but a lot of the added stuff is documentation.
It is also worth noting that the downstream pass has been validated on
https://github.com/BerkeleyLab/fiats. For the CPU mapping, this achived
performance speed-ups that match pure OpenMP, for GPU mapping we are
still working on extending our support for implicit memory mapping and
locality specifiers.
PR stack:
- https://github.com/llvm/llvm-project/pull/126026 (this PR)
- https://github.com/llvm/llvm-project/pull/127595
- https://github.com/llvm/llvm-project/pull/127633
- https://github.com/llvm/llvm-project/pull/127634
- https://github.com/llvm/llvm-project/pull/127635
Add -f[no-]slp-vectorize to the flang driver.
Add corresponding -fvectorize-slp to the flang frontend.
Enable -fslp-vectorize at -O2 and higher in flang to match the current
behaviour in clang.
---------
Signed-off-by: Kajetan Puchalski <kajetan.puchalski@arm.com>
This PR addresses some of the issues described in
https://github.com/llvm/llvm-project/issues/127617. Key changes:
- Stop assuming fixed-form for `-x f95` unless the input is a `.i` file.
This change ensures compatibility with `-save-temps` workflows while
preventing unintended fixed-form assumptions.
- Ensure `-x f95-cpp-input` enables `-cpp` by default, aligning Flang's
behavior with `gfortran`.
`-fd-lines-as-code` and `-fd-lines-as-comments` enables treatment for
lines beginning with `d` or `D` in fixed form sources.
Using these options in free form has no effect.
If the `-fd-lines-as-code` option is given they are treated as if the
first column contained a blank.
If the `-fd-lines-as-comments` option is given, they are treated as
comment lines.
This patch adds the -fvectorize and -fno-vectorize flags to flang.
Note that this also changes the behaviour of `flang -fc1` to match that
of `clang -cc1`, which is that vectorization is only enabled in the
presence of the `-vectorize-loops` flag.
Additionally, this patch changes the behaviour of the default
optimisation levels to match clang, such that vectorization only happens
at the same levels as it does there.
This patch is in draft while I write an RFC to discuss the above two
changes.
This is needed to generate proper ABI flags in the ELF header for LTO
builds. If these flags aren't set correctly, we can't link with objects
that were built with the correct flags.
For non-LTO builds the mcpu/mattr in the TargetMachine will cause the
backend to infer an ABI. For LTO builds the mcpu/mattr aren't set.
I've only added lp64, lp64f, and lp64d ABIs. ilp32* requires riscv32
which is not yet supported in flang. lp64e requires a different
DataLayout string and would need additional plumbing.
Fixes#115679
Summary:
We support `nogpulib` to disable implicit libraries. In the future we
will want to change the default linking of these libraries based on the
user language. This patch just introduces a positive variant so now we
can do `-nogpulib -gpulib` to disable it.
Later patch will make the default a variable in the ROCmToolChain
depending on the target languages.
Following the conclusion of the
[RFC](https://discourse.llvm.org/t/rfc-names-for-flang-rt-libraries/84321),
rename Flang's runtime libraries as follows:
* libFortranRuntime.(a|so) to libflang_rt.runtime.(a|so)
* libFortranFloat128Math.a to libflang_rt.quadmath.a
* libCufRuntime_cuda_${CUDAToolkit_VERSION_MAJOR}.(a|so) to
libflang_rt.cuda_${CUDAToolkit_VERSION_MAJOR}.(a|so)
This follows the same naming scheme as Compiler-RT libraries
(`libclang_rt.${component}.(a|so)`). It provides some consistency
between Flang's runtime libraries for current and potential future
library components.
Avoid using the same library for runtime and compiler. `FortranDecimal`
was used in two ways:
1. As an auxiliary library needed for `libFortranRuntime.a`. This patch
adds the two source files of FortranDecimal directly into
FortranRuntime, so `FortranRuntime` is not used anymore.
2. As a library used by the Flang compiler. As the only remaining use of
the library, extra CMake code to make it compatible with the runtime can
be removed.
Before this PR, `enable_cuda_compilation` is applied to `FortranDecimal`
which causes everything that links to it, including flang (the
compiler), to depend on libcudart when CUDA support is enabled.
Having two runtime library just makes everything more complicated while
the user ideally should not be concerned with how the runtime is
structured internally. Some logic was copied for FortranDecimal because
of this, such as the ability to be compiled out-of tree
(b75a3c9f31c1ffdc9856aee32991d8129b372ee7) which is undocumented, the
logic to link against the various versions of Microsofts runtime library
(#70833), and avoiding dependency on the C++ runtime
(7783bba22c7add678d796741d30669c73159b3d8).
When -fimplicit-none-ext is passed, flang behaves as if "implicit
none(external)" was specified for all relevant constructs in Fortran
source file.
Note: implicit17.f90 was based on implicit07.f90 with `implicit
none(external)` removed and `-fimplicit-none-ext` added.
The behavior is not entirely consistent with that of clang for the
moment since detailed timing information on the LLVM IR optimization and
code generation passes is not provided. The -ftime-report= option is
also not enabled since that is only relevant for information about the
LLVM IR passes. However, some code to handle that option has been
included, to make it easier to support the option when the issues
blocking it are resolved. A FortranSupport library has been created that
is intended to mirror the LLVM and MLIR support libraries.
Based on @tarunprabhu's PR
https://github.com/llvm/llvm-project/pull/107270 with minor changes
addressing latest review feedback. He's busy and we'd like to get this
support in ASAP.
Co-authored-by: Tarun Prabhu <tarun.prabhu@gmail.com>
Implement the UNSIGNED extension type and operations under control of a
language feature flag (-funsigned).
This is nearly identical to the UNSIGNED feature that has been available
in Sun Fortran for years, and now implemented in GNU Fortran for
gfortran 15, and proposed for ISO standardization in J3/24-116.txt.
See the new documentation for details; but in short, this is C's
unsigned type, with guaranteed modular arithmetic for +, -, and *, and
the related transformational intrinsic functions SUM & al.
-frealloc-lhs is the default.
If -fno-realloc-lhs is specified, then an allocatable on the left
side of an intrinsic assignment is not implicitly (re)allocated
to conform with the right hand side. Fortran runtime will issue
an error if there is a mismatch in shape/type/allocation-status.
Mainly including the following LoongArch specific options: -m[no-]lsx,
-m[no-]lasx, -msimd=, -m[no-]frecipe, -m[no-]lam-bh, -m[no-]lamcas,
-m[no-]ld-seq-sa, -m[no-]div32,
-m[no-]annotate-tablejump
Fixes an issue introduced by
9fb2db1e1f42 [flang] Retain spaces when preprocessing fixed-form source
Where flang -fc1 fails to parse preprocessor output because it now
remains in fixed form.
This patch:
- Supports both the passing and returning of BIND(C) type parameters.
- Adds `mabi` check for LoongArch64. Currently, flang only supports
`mabi=` option
set to `lp64d` in LoongArch64, other ABIs will report an error and may
be supported
in the future.
Reference ABI:
https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc#subroutine-calling-sequence
The aliases are -mcpu=help and -mtune=help. There is still an issue with
the output which prints an example line that references clang. That is
not fixed here because it is printed in llvm/MC/SubtargetInfo.cpp. Some
more thought is needed to determine how best to handle this.
Fixes#117010