This is a major change on how we represent nested name qualifications in
the AST.
* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.
This patch offers a great performance benefit.
It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.
This has great results on compile-time-tracker as well:

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.
It has some other miscelaneous drive-by fixes.
About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.
There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.
How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.
The rest and bulk of the changes are mostly consequences of the changes
in API.
PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.
Fixes#136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
When substituting for rewrite purposes, as in rebuilding constraints for
a synthesized deduction guide, it assumed that packs were in
PackExpansion* form, such that the instantiator could extract a pattern.
For type aliases CTAD, while rebuilding their associated constraints,
this might not be the case because we'll call
`TransformTemplateArgument()` for the alias template arguments, where
there might be cases e.g. a non-pack expansion type into a pack
expansion, so the assumption wouldn't hold.
This patch fixes that by making it treat the non-pack expansions as
direct patterns when rewriting.
Fixes#124715
This seems to be low-hanging fruit: We could remove all calls to
`Context.getCanonicalTemplateArgument()` and gain a better
diagnostic/AST.
The non-canonical template arguments shouldn't make a difference when
synthesizing a CTAD guide, so this is intended to be an NFC.
Closes https://github.com/llvm/llvm-project/issues/79798
As described in https://github.com/llvm/llvm-project/issues/90209#issuecomment-2135972202,
Clang may not preserve enough information during template argument
deduction. This can result in a merely canonical `TemplateTypeParmType`
with a null `Decl`, leading to an incomplete template parameter list for
the synthesized deduction guide.
This patch addresses the issue by using the index and depth information
to retrieve the corresponding template parameter, rather than relying on
`TTP->getDecl()`.
Fixes#90209
In the https://github.com/llvm/llvm-project/pull/90961 fix, we miss a
case where the undeduced template parameters of the underlying deduction
guide are not transformed, which leaves incorrect depth/index
information, and causes crashes when evaluating constraints.
This patch fix this missing case.
Fixes#92596Fixes#92212
This patch improves the preservation of qualifiers and loss of type
sugar in TemplateNames.
This problem is analogous to https://reviews.llvm.org/D112374 and this
patch takes a very similar approach to that patch, except the impact
here is much lesser.
When a TemplateName was written bare, without qualifications, we
wouldn't produce a QualifiedTemplate which could be used to disambiguate
it from a Canonical TemplateName. This had effects in the TemplateName
printer, which had workarounds to deal with this, and wouldn't print the
TemplateName as-written in most situations.
There are also some related fixes to help preserve this type sugar along
the way into diagnostics, so that this patch can be properly tested.
- Fix dropping the template keyword.
- Fix type deduction to preserve sugar in TST TemplateNames.
clang rejects some valid code (see testcases) because of an incorrect
transformed deduction guides. This patch fixes it.
We miss the template argument packs during the transformation (`auto
(type-parameter-0-0...) -> Foo<>`). In
`TreeTransform::TransformTemplateArguments `, we have a logic of
handling template argument packs which were originally added to support
CTAD alias, it doesn't seem to be needed, we need to unpack them.
Fixes https://github.com/llvm/llvm-project/issues/85192
Fixes https://github.com/llvm/llvm-project/issues/84492
This patch implements the "IsDeducible" constraint where the template
arguments of the alias template can be deduced from the returned type of
the synthesized deduction guide, per C++ [over.match.class.deduct]p4. In
the implementation, we perform the deduction directly, which is more
efficient than the way specified in the standard.
Also update relevant CTAD tests which were incorrectly compiled due to
the missing constraint.
In the clang AST, constraint nodes are deliberately not instantiated
unless they are actively being evaluated. Consequently, occurrences of
template parameters in the require-clause expression have a subtle
"depth" difference compared to normal occurrences in places, such as
function parameters. When transforming the require-clause, we must take
this distinction into account.
The existing implementation overlooks this consideration. This patch is
to rewrite the implementation of the require-clause transformation to
address this issue.
Fixes#90177