Main reason for this change is that these checkers were implemented in the same class
but had different dependency ordering. (NonNullParamChecker should run before StdCLibraryFunctionArgs
to get more special warning about null arguments, but the apiModeling.StdCLibraryFunctions was a modeling
checker that should run before other non-modeling checkers. The modeling checker changes state in a way
that makes it impossible to detect a null argument by NonNullParamChecker.)
To make it more simple, the modeling part is removed as separate checker and can be only used if
checker StdCLibraryFunctions is turned on, that produces the warnings too. Modeling the functions
without bug detection (for invalid argument) is not possible. The modeling of standard functions
does not happen by default from this change on.
Reviewed By: Szelethus
Differential Revision: https://reviews.llvm.org/D151225
A significant number of our tests in C accidentally use functions
without prototypes. This patch converts the function signatures to have
a prototype for the situations where the test is not specific to K&R C
declarations. e.g.,
void func();
becomes
void func(void);
This is the eighth batch of tests being updated (there are a
significant number of other tests left to be updated).
This expands checking for more expressions. This will check underflow
and loss of precision when using call expressions like:
void foo(unsigned);
int i = -1;
foo(i);
This also includes other expressions as well, so it can catch negative
indices to std::vector since it uses unsigned integers for [] and .at()
function.
Patch by: @pfultz2
Differential Revision: https://reviews.llvm.org/D46081
Adding trackExpressionValue to the checker so it tracks the value of the
implicit cast's DeclRefExpression up to initialization/assignment. This
way the report becomes cleaner.
Differential Revision: https://reviews.llvm.org/D109836
Extend the alpha.core.Conversion checker to handle implicit converions
where a too large integer value is converted to a floating point type. Each
floating point type has a range where it can exactly represent all integers; we
emit a warning when the integer value is above this range. Although it is
possible to exactly represent some integers which are outside of this range
(those that are divisible by a large enough power of 2); we still report cast
involving those, because their usage may lead to bugs. (For example, if 1<<24
is stored in a float variable x, then x==x+1 holds.)
Patch by: Donát Nagy!
Differential Revision: https://reviews.llvm.org/D52730
llvm-svn: 347006
Because all our languages are C-based, there's no reason to
enable this checker only on UNIX targets.
Patch by Donát Nagy!
Differential Revision: https://reviews.llvm.org/D52722
llvm-svn: 343632
The first attempt, rL315614 was reverted because one libcxx
test broke, and i did not know at the time how to deal with it.
Summary:
Currently, clang only diagnoses completely out-of-range comparisons (e.g. `char` and constant `300`),
and comparisons of unsigned and `0`. But gcc also does diagnose the comparisons with the
`std::numeric_limits<>::max()` / `std::numeric_limits<>::min()` so to speak
Finally Fixes https://bugs.llvm.org/show_bug.cgi?id=34147
Continuation of https://reviews.llvm.org/D37565
Reviewers: rjmccall, rsmith, aaron.ballman
Reviewed By: rsmith
Subscribers: rtrieu, jroelofs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D38101
llvm-svn: 315875
Summary:
The alpha.core.Conversion was too strict about compound assignments and could warn even though there is no problem.
Differential Revision: https://reviews.llvm.org/D25596
llvm-svn: 299523
This new checker tries to find execution paths on which implicit integral casts
cause definite loss of information: a certainly-negative integer is converted
to an unsigned integer, or an integer is definitely truncated to fit into
a smaller type.
Being implicit, such casts are likely to produce unexpected results.
Patch by Daniel Marjamäki!
Differential Revision: https://reviews.llvm.org/D13126
llvm-svn: 278941