This is a major change on how we represent nested name qualifications in
the AST.
* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.
This patch offers a great performance benefit.
It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.
This has great results on compile-time-tracker as well:

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.
It has some other miscelaneous drive-by fixes.
About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.
There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.
How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.
The rest and bulk of the changes are mostly consequences of the changes
in API.
PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.
Fixes#136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
This is a rework of patch [D10833](https://reviews.llvm.org/D10833)
previously posted on LLVM Phabricator by arthurp in 2015. It allows to
retrieve the type of binary operator via libclangs python bindings.
I did clean up the changes, removed unrelated changes and rebased the
changeset to the latest main branch. As this is my first contribution to
the LLVM project, let me know if any required tests or documentation are
missing.
b8f89b84bc26c46a5a10d01eb5414fbde3c8700a inadvertently replaced
startswith/endswith with starts_with/ends_with even though the test
uses a custom StringRef. This patch reverts the change.
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
The LinkageSpec case was omitted, and there is a declared CXCursor_Kind
for it. Adapt the testsuite drivers to print mangled names for
declarations with extern linkage. Also update the test baseline for the
recursive-cxx-member-calls.cpp test.
Co-authored-by: Matthieu Eyraud <eyraud@adacore.com>
The new method is a wrapper of `CXXConstructorDecl::isExplicit` and
`CXXConversionDecl::isExplicit`, allowing the user to recognize whether
the declaration pointed to by a cursor was marked with the explicit
specifier.
An export for the function, together with its documentation, was added
to "clang/include/clang-c/Index.h" with an implementation provided in
"clang/tools/libclang/CIndex.cpp".
The implementation is based on similar `clang_CXXMethod`
implementations, returning a falsy unsigned value when the cursor is not
a declaration, is not a declaration for a constructor or conversion
function or is not a relevant declaration that was marked with the
`explicit` specifier.
The new symbol was added to "clang/tools/libclang/libclang.map" to be
exported, under the LLVM16 tag.
"clang/tools/c-index-test/c-index-test.c" was modified to print a
specific tag, "(explicit)", for cursors that are recognized by
`clang_CXXMethod_isExplicit`.
Two new regression files, "explicit-constructor.cpp" and
"explicit-conversion-function.cpp", were added to "clang/test/Index", to
ensure that the behavior of the new function is correct for constructors
and conversion functions, respectively.
The "get-cursor.cpp", "index-file.cpp" and
"recursive-cxx-member-calls.cpp" regression files in "clang/test/Index"
were updated as they were affected by the new "(explicit)" tag.
A binding for the new function was added to libclang's python's
bindings, in "clang/bindings/python/clang/cindex.py", as the
"is_explicit_method" method under `Cursor`.
An accompanying test was added to
"clang/bindings/python/tests/cindex/test_cursor.py", mimicking the
regression tests for the C side.
The current release note for Clang, "clang/docs/ReleaseNotes.rst" was
modified to report the new addition under the "libclang" section.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D140756
The new method is a wrapper of `CXXConstructorDecl::isExplicit` and
`CXXConversionDecl::isExplicit`, allowing the user to recognize whether
the declaration pointed to by a cursor was marked with the explicit
specifier.
An export for the function, together with its documentation, was added
to "clang/include/clang-c/Index.h" with an implementation provided in
"clang/tools/libclang/CIndex.cpp".
The implementation is based on similar `clang_CXXMethod`
implementations, returning a falsy unsigned value when the cursor is not
a declaration, is not a declaration for a constructor or conversion
function or is not a relevant declaration that was marked with the
`explicit` specifier.
The new symbol was added to "clang/tools/libclang/libclang.map" to be
exported, under the LLVM16 tag.
"clang/tools/c-index-test/c-index-test.c" was modified to print a
specific tag, "(explicit)", for cursors that are recognized by
`clang_CXXMethod_isExplicit`.
Two new regression files, "explicit-constructor.cpp" and
"explicit-conversion-function.cpp", were added to "clang/test/Index", to
ensure that the behavior of the new function is correct for constructors
and conversion functions, respectively.
The "get-cursor.cpp", "index-file.cpp" and
"recursive-cxx-member-calls.cpp" regression files in "clang/test/Index"
were updated as they were affected by the new "(explicit)" tag.
A binding for the new function was added to libclang's python's
bindings, in "clang/bindings/python/clang/cindex.py", as the
"is_explicit_method" method under `Cursor`.
An accompanying test was added to
"clang/bindings/python/tests/cindex/test_cursor.py", mimicking the
regression tests for the C side.
The current release note for Clang, "clang/docs/ReleaseNotes.rst" was
modified to report the new addition under the "libclang" section.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D140756
Printing typedefs or type aliases using clang_getTypeSpelling() is missing the
namespace they are defined in. This is in contrast to other types that always
yield the full typename including namespaces.
Patch by Michael Reiher!
Differential Revision: https://reviews.llvm.org/D29944
llvm-svn: 297465
Summary:
I have exposed the following function through libclang and the clang.cindex python bindings:
clang_CXXConstructor_isConvertingConstructor,
clang_CXXConstructor_isCopyConstructor,
clang_CXXConstructor_isDefaultConstructor,
clang_CXXConstructor_isMoveConstructor,
clang_CXXMethod_isDefaulted
I need (some of) these methods for a C++ code model I am building in Python to drive a code generator.
Reviewers: compnerd, skalinichev
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D15469
llvm-svn: 267706
Ranges before:
void test(void (*)(int), int, float);
~~~~~~~~~~~~~ ~~~~ ~~~~~~
Ranges after:
void test(void (*)(int), int, float);
~~~~~~~~~~~~~ ~~~ ~~~~~
This does not change the actual location of the ParmVarDecl, it still
points to the location where the name would be. PR17970.
llvm-svn: 200640
Previously type/storage qualifiers would not be annotated as the declaration they belonged to.
Just use the resulting source range of getRawCursorExtent() which is more correct
than what AnnotateTokensWorker::Visit() was adjusting it to.
llvm-svn: 171774
copy-list-initialization (and doesn't add an additional copy step):
Fill in the ListInitialization bit when creating a CXXConstructExpr. Use it
when instantiating initializers in order to correctly handle instantiation of
copy-list-initialization. Teach TreeTransform that function arguments are
initializations, and so need this special treatment too. Finally, remove some
hacks which were working around SubstInitializer's shortcomings.
llvm-svn: 170489
that is referencing the member function, so we can index the referenced function.
Fixes rdar://10762375&10324915 & http://llvm.org/PR11192
llvm-svn: 150033
a DeclRefExpr, MemberExpr, etc. with a CastExpr if it is ImplicitCast,
since the implicit cast is the one that is invisible in source code.
llvm-svn: 139547
3 lines of code and improve a bunch of information in the libclang view
of the code.
Updates the two tests that exercise this with the new data, checking
that each new source location actually points back to the declared
template parameter.
llvm-svn: 130656
template specialization types. This also required some parser tweaks,
since we were losing track of the nested-name-specifier's source
location information in several places in the parser. Other notable
changes this required:
- Sema::ActOnTagTemplateIdType now type-checks and forms the
appropriate type nodes (+ source-location information) for an
elaborated-type-specifier ending in a template-id. Previously, we
used a combination of ActOnTemplateIdType and
ActOnTagTemplateIdType that resulted in an ElaboratedType wrapped
around a DependentTemplateSpecializationType, which duplicated the
keyword ("class", "struct", etc.) and nested-name-specifier
storage.
- Sema::ActOnTemplateIdType now gets a nested-name-specifier, which
it places into the returned type-source location information.
- Sema::ActOnDependentTag now creates types with source-location
information.
llvm-svn: 126808
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126737
DependentNameTypeLoc. Teach the recursive AST visitor and libclang how to
walk DependentNameTypeLoc nodes.
Also, teach libclang about TypedefDecl source ranges, so that we get
those. The massive churn in test/Index/recursive-cxx-member-calls.cpp
is a good thing: we're annotating a lot more of this test correctly
now.
llvm-svn: 126729
an implicit "this"; it causes clang_getCursor() to find the implicit
"this" expression (which isn't written in the source!) rather than the
actual member.
llvm-svn: 119516
Now we explicitly memset all of its values.
This bug was uncovered by the 'Index/recursive-cxx-member-calls.cpp', which exhibited an assertion
on an i386 darwin build of clang. Adding this test case back since the assertion is now resolved.
llvm-svn: 118881
is gradually becoming more data recursive, AnnotateTokensVisitor does its own recursive call
within the visitor that can still blow out the stack. This can potentially be reworked to avoid this,
but for now just do token annotation on a separate thread.
llvm-svn: 118783