This implements the same overload resolution behavior as GCC,
as described in https://wg21.link/p3606 (section 1-2, not 3)
If during overload resolution, there is a non-template candidate
that would be always be picked - because each of the argument
is a perfect match (ie the source and target types are the same),
we do not perform deduction for any template candidate
that might exists.
The goal is to be able to merge
https://github.com/llvm/llvm-project/pull/122423 without being too
disruptive.
This change means that the selection of the best viable candidate and
template argument deduction become interleaved.
To avoid rewriting half of Clang we store in `OverloadCandidateSet`
enough information to be able to deduce template candidates from
`OverloadCandidateSet::BestViableFunction`. Which means
the lifetime of any object used by template argument must outlive
a call to `Add*Template*Candidate`.
This two phase resolution is not performed for some initialization
as there are cases where template candidate are better match
in these cases per the standard. It's also bypassed for code completion.
The change has a nice impact on compile times
https://llvm-compile-time-tracker.com/compare.php?from=719b029c16eeb1035da522fd641dfcc4cee6be74&to=bf7041045c9408490c395230047c5461de72fc39&stat=instructions%3Au
Fixes https://github.com/llvm/llvm-project/issues/62096
Fixes https://github.com/llvm/llvm-project/issues/74581
Reapplies #133426
This implements the same overload resolution behavior as GCC,
as described in https://wg21.link/p3606 (sections 1-2, not 3)
If, during overload resolution, a non-template candidate is always
picked because each argument is a perfect match (i.e., the source and
target types are the same), we do not perform deduction for any template
candidate that might exist.
The goal is to be able to merge #122423 without being too disruptive.
This change means that the selection of the best viable candidate and
template argument deduction become interleaved.
To avoid rewriting half of Clang, we store in `OverloadCandidateSet`
enough information to deduce template candidates from
`OverloadCandidateSet::BestViableFunction`. This means the lifetime of
any object used by the template argument must outlive a call to
`Add*Template*Candidate`.
This two-phase resolution is not performed for some initialization as
there are cases where template candidates are a better match per the
standard. It's also bypassed for code completion.
The change has a nice impact on compile times
https://llvm-compile-time-tracker.com/compare.php?from=edc22c64e527171041876f26a491bb1d03d905d5&to=8170b860bd4b70917005796c05a9be013a95abb2&stat=instructions%3AuFixes#62096Fixes#74581Fixes#53454
This patch relands the following PRs:
* #111711
* #107350
* #111457
All of these patches were reverted due to an issue reported in
https://github.com/llvm/llvm-project/pull/111711#issuecomment-2406491485,
due to interdependencies.
---
[clang] Finish implementation of P0522
This finishes the clang implementation of P0522, getting rid
of the fallback to the old, pre-P0522 rules.
Before this patch, when partial ordering template template parameters,
we would perform, in order:
* If the old rules would match, we would accept it. Otherwise, don't
generate diagnostics yet.
* If the new rules would match, just accept it. Otherwise, don't
generate any diagnostics yet again.
* Apply the old rules again, this time with diagnostics.
This situation was far from ideal, as we would sometimes:
* Accept some things we shouldn't.
* Reject some things we shouldn't.
* Only diagnose rejection in terms of the old rules.
With this patch, we apply the P0522 rules throughout.
This needed to extend template argument deduction in order
to accept the historial rule for TTP matching pack parameter to non-pack
arguments.
This change also makes us accept some combinations of historical and P0522
allowances we wouldn't before.
It also fixes a bunch of bugs that were documented in the test suite,
which I am not sure there are issues already created for them.
This causes a lot of changes to the way these failures are diagnosed,
with related test suite churn.
The problem here is that the old rules were very simple and
non-recursive, making it easy to provide customized diagnostics,
and to keep them consistent with each other.
The new rules are a lot more complex and rely on template argument
deduction, substitutions, and they are recursive.
The approach taken here is to mostly rely on existing diagnostics,
and create a new instantiation context that keeps track of this context.
So for example when a substitution failure occurs, we use the error
produced there unmodified, and just attach notes to it explaining
that it occurred in the context of partial ordering this template
argument against that template parameter.
This diverges from the old diagnostics, which would lead with an
error pointing to the template argument, explain the problem
in subsequent notes, and produce a final note pointing to the parameter.
---
[clang] CWG2398: improve overload resolution backwards compat
With this change, we discriminate if the primary template and which partial
specializations would have participated in overload resolution prior to
P0522 changes.
We collect those in an initial set. If this set is not empty, or the
primary template would have matched, we proceed with this set as the
candidates for overload resolution.
Otherwise, we build a new overload set with everything else, and proceed
as usual.
---
[clang] Implement TTP 'reversed' pack matching for deduced function template calls.
Clang previously missed implementing P0522 pack matching
for deduced function template calls.
This finishes the clang implementation of P0522, getting rid of the
fallback to the old, pre-P0522 rules.
Before this patch, when partial ordering template template parameters,
we would perform, in order:
* If the old rules would match, we would accept it. Otherwise, don't
generate diagnostics yet.
* If the new rules would match, just accept it. Otherwise, don't
generate any diagnostics yet again.
* Apply the old rules again, this time with diagnostics.
This situation was far from ideal, as we would sometimes:
* Accept some things we shouldn't.
* Reject some things we shouldn't.
* Only diagnose rejection in terms of the old rules.
With this patch, we apply the P0522 rules throughout.
This needed to extend template argument deduction in order to accept the
historial rule for TTP matching pack parameter to non-pack arguments.
This change also makes us accept some combinations of historical and
P0522 allowances we wouldn't before.
It also fixes a bunch of bugs that were documented in the test suite,
which I am not sure there are issues already created for them.
This causes a lot of changes to the way these failures are diagnosed,
with related test suite churn.
The problem here is that the old rules were very simple and
non-recursive, making it easy to provide customized diagnostics, and to
keep them consistent with each other.
The new rules are a lot more complex and rely on template argument
deduction, substitutions, and they are recursive.
The approach taken here is to mostly rely on existing diagnostics, and
create a new instantiation context that keeps track of this context.
So for example when a substitution failure occurs, we use the error
produced there unmodified, and just attach notes to it explaining that
it occurred in the context of partial ordering this template argument
against that template parameter.
This diverges from the old diagnostics, which would lead with an error
pointing to the template argument, explain the problem in subsequent
notes, and produce a final note pointing to the parameter.
This finishes the clang implementation of P0522, getting rid of the
fallback to the old, pre-P0522 rules.
Before this patch, when partial ordering template template parameters,
we would perform, in order:
* If the old rules would match, we would accept it. Otherwise, don't
generate diagnostics yet.
* If the new rules would match, just accept it. Otherwise, don't
generate any diagnostics yet again.
* Apply the old rules again, this time with diagnostics.
This situation was far from ideal, as we would sometimes:
* Accept some things we shouldn't.
* Reject some things we shouldn't.
* Only diagnose rejection in terms of the old rules.
With this patch, we apply the P0522 rules throughout.
This needed to extend template argument deduction in order to accept the
historial rule for TTP matching pack parameter to non-pack arguments.
This change also makes us accept some combinations of historical and
P0522 allowances we wouldn't before.
It also fixes a bunch of bugs that were documented in the test suite,
which I am not sure there are issues already created for them.
This causes a lot of changes to the way these failures are diagnosed,
with related test suite churn.
The problem here is that the old rules were very simple and
non-recursive, making it easy to provide customized diagnostics, and to
keep them consistent with each other.
The new rules are a lot more complex and rely on template argument
deduction, substitutions, and they are recursive.
The approach taken here is to mostly rely on existing diagnostics, and
create a new instantiation context that keeps track of things.
So for example when a substitution failure occurs, we use the error
produced there unmodified, and just attach notes to it explaining that
it occurred in the context of partial ordering this template argument
against that template parameter.
This diverges from the old diagnostics, which would lead with an error
pointing to the template argument, explain the problem in subsequent
notes, and produce a final note pointing to the parameter.
The diagnostics engine is very smart about being passed a NamedDecl to
print as part of a diagnostic; it gets the "right" form of the name,
quotes it properly, etc. However, the result of using an unnamed tag
declaration was to print '' instead of anything useful.
This patch causes us to print the same information we'd have gotten if
we had printed the type of the declaration rather than the name of it,
as that's the most relevant information we can display.
Differential Revision: https://reviews.llvm.org/D134813
Patch originally by oktal3000: https://github.com/mikael-s-persson/templight/pull/40
When a template parameter is unnamed, the name of -templight-dump might return
an empty string. This is fine, they are unnamed after all, but it might be more
user friendly to at least describe what entity is unnamed.
Differential Revision: https://reviews.llvm.org/D115521