We've been improving these the tests for vector quite a bit and we are
probably not done improving our container tests. Formatting everything
at once will make subsequent reviews easier.
Summary:
The GPU runs these tests using the files built from the `libc` project.
These will be placed in `include/<triple>` and `lib/<triple>`. We use
the `amdhsa-loader` and `nvptx-loader` tools, which are also provided by
`libc`. These launch a kernel called `_start` which calls `main` so we
can pretend like GPU programs are normal terminal applications.
We force serial exeuction here, because `llvm-lit` runs way too many
processes in parallel, which has a bad habit of making the GPU drivers
hang or run out of resources. This allows the compilation to be run in
parallel while the jobs themselves are serialized via a file lock.
In the future this can likely be refined to accept user specified
architectures, or better handle including the root directory by exposing
that instead of just `include/<triple>/c++/v1/`.
This currently fails ~1% of the tests on AMDGPU and ~3% of the tests on
NVPTX. This will hopefully be reduced further, and later patches can
XFAIL a lot of them once it's down to a reasonable number.
Future support will likely want to allow passing in a custom
architecture instead of simply relying on `-mcpu=native`.
Previous PR #107344 fixed move constructor of `test_allocator` but
dropped test coverage for move construction in some cases. This PR
attempts to restore the test coverage.
Thanks @Quuxplusone for reminding.
The resolution of LWG2593 didn't require the standard library
implementation to change. It merely strengthened requirements on
user-defined allocator types and allowed the implementation to make
stronger assumptions. The status is tentatively set to Nothing To Do.
However, `test_allocator` in libc++'s test suit needs to be fixed to
conform to the strengthened requirements.
Closes#100220.
This implements the requirements for the container iterator requirements
for array, deque, vector, and `vector<bool>`.
Implements:
- LWG3352 strong_equality isn't a thing
Implements parts of:
- P1614R2 The Mothership has Landed
Fixes: https://github.com/llvm/llvm-project/issues/62486
This patch improves the preservation of qualifiers and loss of type
sugar in TemplateNames.
This problem is analogous to https://reviews.llvm.org/D112374 and this
patch takes a very similar approach to that patch, except the impact
here is much lesser.
When a TemplateName was written bare, without qualifications, we
wouldn't produce a QualifiedTemplate which could be used to disambiguate
it from a Canonical TemplateName. This had effects in the TemplateName
printer, which had workarounds to deal with this, and wouldn't print the
TemplateName as-written in most situations.
There are also some related fixes to help preserve this type sugar along
the way into diagnostics, so that this patch can be properly tested.
- Fix dropping the template keyword.
- Fix type deduction to preserve sugar in TST TemplateNames.
Fixes#75975.
Remove `_LIBCPP_ENABLE_CXX20_REMOVED_ALLOCATOR_MEMBERS` for the LLVM 19
release, it was previously marked as deprecated in LLVM 18.
I believe that
`_LIBCPP_ENABLE_CXX20_REMOVED_ALLOCATOR_VOID_SPECIALIZATION` was only
used by Google in conjunction with
`_LIBCPP_ENABLE_CXX20_REMOVED_ALLOCATOR_MEMBERS`.
Removing both macros together should not cause any issues in practice,
even though we did not announce the removal of
`_LIBCPP_ENABLE_CXX20_REMOVED_ALLOCATOR_VOID_SPECIALIZATION` before.
While trying to work around MSAN/TSAN build timeouts, we enabled
optimizations on some tests. This caused GCC to start complaining that
some values may be uninitialized. I believe GCC is wrong, but more
investigation is needed.
The values are initialized when the variable `__g` is either < 0 or >=
0. Which only leaves out NaN I believe, which is likely well into UB
land anyway.
However, more investigation needed.
This attempts to fix flakes on the bots where the modified test times
out while running under sanitizers.
Turning on the optimizer for just this test appears to mostly fix the
issue.
I've structured this into a series of commits for even easier reviewing,
if that helps. I could easily split this up into separate PRs if
desired, but as this is low-risk with simple edits, I thought one PR
would be easiest.
* Drop unnecessary semicolons after function definitions.
* Cleanup comment typos.
* Cleanup `static_assert` typos.
* Cleanup test code typos.
+ There should be no functional changes, assuming I've changed all
occurrences.
* ~~Fix massive test code typos.~~
+ This was a real problem, but needed more surgery. I reverted those
changes here, and @philnik777 is fixing this properly with #73444.
* clang-formatting as requested by the CI.
Found while running libc++'s test suite with MSVC's STL.
This is structured into a series of commits for easier reviewing; I
could also split this into smaller PRs if desired.
* Add void-casts for `invoke_r` calls to fix MSVC STL `[[nodiscard]]`
warnings.
+ Our rationale is that if someone is calling `invoke_r<NonVoidType>`,
it sure looks like they care about the return value.
* Add `[[maybe_unused]]` to silence `-Wunused-parameter` warnings.
+ This happens because the parameters are used within `LIBCPP_ASSERT`,
which vanishes for MSVC's STL. This also motivates the following
changes.
* Add `[[maybe_unused]]` to fix `-Wunused-variable` warnings.
* Always void-cast `debug_comparisons` to fix `-Wunused-variable`
warnings.
+ As this was already unused with a void-cast in one
`_LIBCPP_HARDENING_MODE` branch, I'm simply lifting it next to the
variable definition.
* Add `[[maybe_unused]]` to fix `-Wunused-local-typedef` warnings.
I made sure they all had some expected-error output in them. Many of
these tests would be better implemented as a positive test using SFINAE,
but this is beyond the scope of this patch.
Differential Revision: https://reviews.llvm.org/D153980
This revision is a part of a series of patches extending AddressSanitizer C++ container overflow detection capabilities by adding annotations, similar to those existing in `std::vector`, to `std::string` and `std::deque` collections. These changes allow ASan to detect cases when the instrumented program accesses memory which is internally allocated by the collection but is still not in-use (accesses before or after the stored elements for `std::deque`, or between the size and capacity bounds for `std::string`).
The motivation for the research and those changes was a bug, found by Trail of Bits, in a real code where an out-of-bounds read could happen as two strings were compared via a std::equals function that took `iter1_begin`, `iter1_end`, `iter2_begin` iterators (with a custom comparison function). When object `iter1` was longer than `iter2`, read out-of-bounds on `iter2` could happen. Container sanitization would detect it.
This revision introduces annotations for `std::deque`. Each chunk of the container can now be annotated using the `__sanitizer_annotate_double_ended_contiguous_container` function, which was added in the rG1c5ad6d2c01294a0decde43a88e9c27d7437d157. Any attempt to access poisoned memory will trigger an ASan error. Although false negatives are rare, they are possible due to limitations in the ASan API, where a few (usually up to 7) bytes before the container may remain unpoisoned. There are no false positives in the same way as with `std::vector` annotations.
This patch only supports objects (deques) that use the standard allocator. However, it can be easily extended to support all allocators, as suggested in the D146815 revision.
Furthermore, the patch includes the addition of the `is_double_ended_contiguous_container_asan_correct` function to `libcxx/test/support/asan_testing.h`. This function can be used to verify whether a `std::deque` object has been correctly annotated.
Finally, the patch extends the unit tests to verify ASan annotations (added LIBCPP_ASSERTs).
If a program is compiled without ASan, all helper functions will be no-ops. In binaries with ASan, there is a negligible performance impact since the code from the change is only executed when the deque container changes in size and it’s proportional to the change. It is important to note that regardless of whether or not these changes are in use, every access to the container's memory is instrumented.
If you have any questions, please email:
- advenam.tacet@trailofbits.com
- disconnect3d@trailofbits.com
Reviewed By: #libc, philnik
Differential Revision: https://reviews.llvm.org/D132092
Some tests in our test suite are unbelievably slow on GCC due to the
use of the always_inline attribute. See [1] for more details.
This patch introduces the GCC-ALWAYS_INLINE-FIXME lit feature to
disable tests that are plagued by that issue. At the same time, it
moves several existing tests from ad-hoc `UNSUPPORTED: gcc-12` markup
to the new GCC-ALWAYS_INLINE-FIXME feature, and marks the slowest tests
reported by the CI as `UNSUPPORTED: GCC-ALWAYS_INLINE-FIXME`.
[1]: https://discourse.llvm.org/t/rfc-stop-supporting-extern-instantiations-with-gcc/71277/1
Differential Revision: https://reviews.llvm.org/D152736
This revision is a part of a series of patches extending AddressSanitizer C++ container overflow detection capabilities by adding annotations, similar to those existing in std::vector, to std::string and `std::deque` collections. These changes allow ASan to detect cases when the instrumented program accesses memory which is internally allocated by the collection but is still not in-use (accesses before or after the stored elements for `std::deque`, or between the size and capacity bounds for `std::string`).
The motivation for the research and those changes was a bug, found by Trail of Bits, in a real code where an out-of-bounds read could happen as two strings were compared via a std::equals function that took `iter1_begin`, `iter1_end`, `iter2_begin` iterators (with a custom comparison function). When object `iter1` was longer than `iter2`, read out-of-bounds on `iter2` could happen. Container sanitization would detect it.
This revision introduces annotations for `std::deque`. Each chunk of the container can now be annotated using the `__sanitizer_annotate_double_ended_contiguous_container` function, which was added in the rG1c5ad6d2c01294a0decde43a88e9c27d7437d157. Any attempt to access poisoned memory will trigger an ASan error. Although false negatives are rare, they are possible due to limitations in the ASan API, where a few (usually up to 7) bytes before the container may remain unpoisoned. There are no false positives in the same way as with `std::vector` annotations.
This patch only supports objects (deques) that use the standard allocator. However, it can be easily extended to support all allocators, as suggested in the D146815 revision.
Furthermore, the patch includes the addition of the `is_double_ended_contiguous_container_asan_correct` function to libcxx/test/support/asan_testing.h. This function can be used to verify whether a `std::deque` object has been correctly annotated.
Finally, the patch extends the unit tests to verify ASan annotations (added LIBCPP_ASSERTs).
If a program is compiled without ASan, all helper functions will be no-ops. In binaries with ASan, there is a negligible performance impact since the code from the change is only executed when the deque container changes in size and it’s proportional to the change. It is important to note that regardless of whether or not these changes are in use, every access to the container's memory is instrumented.
Reviewed By: #libc, philnik
Spies: vitalybuka, hans, mikhail.ramalho, Enna1, #sanitizers, philnik, libcxx-commits
Differential Revision: https://reviews.llvm.org/D132092
- add the `from_range_t` constructors and the related deduction guides;
- add the `insert_range`/`assign_range`/etc. member functions.
(Note: this patch is split from https://reviews.llvm.org/D142335)
Differential Revision: https://reviews.llvm.org/D149827
This revision is a part of a series of patches extending AddressSanitizer C++ container overflow detection capabilities by adding annotations, similar to those existing in std::vector, to std::string and `std::deque` collections. These changes allow ASan to detect cases when the instrumented program accesses memory which is internally allocated by the collection but is still not in-use (accesses before or after the stored elements for `std::deque`, or between the size and capacity bounds for `std::string`).
The motivation for the research and those changes was a bug, found by Trail of Bits, in a real code where an out-of-bounds read could happen as two strings were compared via a std::equals function that took `iter1_begin`, `iter1_end`, `iter2_begin` iterators (with a custom comparison function). When object `iter1` was longer than `iter2`, read out-of-bounds on `iter2` could happen. Container sanitization would detect it.
This revision introduces annotations for `std::deque`. Each chunk of the container can now be annotated using the `__sanitizer_annotate_double_ended_contiguous_container` function, which was added in the rG1c5ad6d2c01294a0decde43a88e9c27d7437d157. Any attempt to access poisoned memory will trigger an ASan error. Although false negatives are rare, they are possible due to limitations in the ASan API, where a few (usually up to 7) bytes before the container may remain unpoisoned. There are no false positives in the same way as with `std::vector` annotations.
This patch only supports objects (deques) that use the standard allocator. However, it can be easily extended to support all allocators, as suggested in the D146815 revision.
Furthermore, the patch includes the addition of the `is_double_ended_contiguous_container_asan_correct` function to libcxx/test/support/asan_testing.h. This function can be used to verify whether a `std::deque` object has been correctly annotated.
Finally, the patch extends the unit tests to verify ASan annotations (added LIBCPP_ASSERTs).
If a program is compiled without ASan, all helper functions will be no-ops. In binaries with ASan, there is a negligible performance impact since the code from the change is only executed when the deque container changes in size and it’s proportional to the change. It is important to note that regardless of whether or not these changes are in use, every access to the container's memory is instrumented.
Reviewed By: #libc, philnik
Spies: mikhail.ramalho, Enna1, #sanitizers, philnik, libcxx-commits
Differential Revision: https://reviews.llvm.org/D132092
This has been done using the following command
find libcxx/test -type f -exec perl -pi -e 's|^([^/]+?)((?<!::)size_t)|\1std::\2|' \{} \;
And manually removed some false positives in std/depr/depr.c.headers.
The `std` module doesn't export `::size_t`, this is a preparation for that module.
Reviewed By: ldionne, #libc, EricWF, philnik
Differential Revision: https://reviews.llvm.org/D146088
We pretty consistently don't define those cause they are not needed,
and it removes the potential pitfall to think that these tests are
being run. This doesn't touch .compile.fail.cpp tests since those
should be replaced by .verify.cpp tests anyway, and there would be
a lot to fix up.
As a fly-by, I also fixed a bit of formatting, removed a few unused
includes and made some very minor, clearly NFC refactorings such as
in allocator.traits/allocator.traits.members/allocate.verify.cpp where
the old test basically made no sense the way it was written.
Differential Revision: https://reviews.llvm.org/D146236
This has been done using the following command
find libcxx/test -type f -exec perl -pi -e 's|^([^/]+?)((?<!::)(?<!::u)u?int(_[a-z]+)?[0-9]{1,2}_t)|\1std::\2|' \{} \;
And manually removed some false positives in std/depr/depr.c.headers.
Reviewed By: ldionne, #libc
Differential Revision: https://reviews.llvm.org/D145880
compile.fail.cpp tests are an anti-feature since they are too easy to
break when evolving code. This patch moves various allocator_mismatch
tests to .verify.cpp and normalizes the error messages from various
containers.
Differential Revision: https://reviews.llvm.org/D144913
This patch simplifies the implementation of `deque` by removing the `__deque_base` class which results in a lot less indirections and removes the need for `__base::`.
Reviewed By: ldionne, #libc
Spies: AdvenamTacet, libcxx-commits
Differential Revision: https://reviews.llvm.org/D132081
When we ship LLVM 16, <ranges> won't be considered experimental anymore.
We might as well do this sooner rather than later.
Differential Revision: https://reviews.llvm.org/D132151
All supported compilers that support C++20 now support concepts. So, remove
`_LIB_LIBCPP_HAS_NO_CONCEPTS` in favor of `_LIBCPP_STD_VER > 17`. Similarly in
the tests, remove `// UNSUPPORTED: libcpp-no-concepts`.
Differential Revision: https://reviews.llvm.org/D121528
We shouldn't be calling `distance` via ADL -- and neither should anybody
in the wild be calling it via ADL, so it's not like we need to test
this ADL ability of `distance` in particular.
Differential Revision: https://reviews.llvm.org/D119685
Disable the constructors taking `(size_type, const value_type&,
allocator_type)` if `allocator_type` is not a valid allocator.
Otherwise, these constructors are considered when resolving e.g.
`(int*, int*, NotAnAllocator())`, leading to a hard error during
instantiation. A hard error makes the Standard's requirement to not
consider deduction guides of the form `(Iterator, Iterator,
BadAllocator)` during overload resolution essentially non-functional.
The previous approach was to SFINAE away `allocator_traits`. This patch
SFINAEs away the specific constructors instead, for consistency with
`basic_string` -- see [LWG3076](wg21.link/lwg3076) which describes
a very similar problem for strings (note, however, that unlike LWG3076,
no valid constructor call is affected by the bad instantiation).
Differential Revision: https://reviews.llvm.org/D114311
Deduction guides for containers should not participate in overload
resolution when called with certain incorrect types (e.g. when called
with a template argument in place of an `InputIterator` that doesn't
qualify as an input iterator). Similarly, class template argument
deduction should not select `unique_ptr` constructors that take a
a pointer.
The tests try out every possible incorrect parameter (but never more
than one incorrect parameter in the same invocation).
Also add deduction guides to the synopsis for associative and unordered
containers (this was accidentally omitted from [D112510](https://reviews.llvm.org/D112510)).
Differential Revision: https://reviews.llvm.org/D112904
Make test_allocator etc. constexpr-friendly so they can be used to test constexpr string and possibly constexpr vector
Reviewed By: Quuxplusone, #libc, ldionne
Differential Revision: https://reviews.llvm.org/D110994
Replace `&__rhs` with `_VSTD::addressof(__rhs)` to guard against ADL hijacking
of `operator&` in `operator=`. Thanks to @CaseyCarter for bringing it to our
attention.
Similar issues with hijacking `operator&` still exist, they will be
addressed separately.
Reviewed By: #libc, Quuxplusone, ldionne
Differential Revision: https://reviews.llvm.org/D110852
Even if these comments have a benefit in .h files (for editors that
care about language but can't be configured to treat .h as C++ code),
they certainly have no benefit for files with the .cpp extension.
Discussed in D110794.
Detected by evil-izing the widely used `MoveOnly` testing type.
I had to patch some tests that were themselves using its comma operator,
but I think that's a worthwhile cost in order to catch more places
in our headers that needed comma-proofing.
The trick here is that even `++ptr, SomeClass()` can find a comma operator
by ADL, if `ptr` is of type `Evil*`. (A comma between two operands
of non-class-or-enum type is always treated as the built-in
comma, without ADL. But if either operand is class-or-enum, then
ADL happens for _both_ operands' types.)
Differential Revision: https://reviews.llvm.org/D109414
All supported compilers have supported deduction guides in C++17 for a
while, so this isn't necessary anymore.
Differential Revision: https://reviews.llvm.org/D108213
Since we officially don't support several older compilers now, we can
drop a lot of the markup in the test suite. This helps keep the test
suite simple and makes sure that UNSUPPORTED annotations don't rot.
This is the first patch of a series that will remove annotations for
compilers that are now unsupported.
Differential Revision: https://reviews.llvm.org/D107787
Adds a new CMake option to disable the usage of incomplete headers.
These incomplete headers are not guaranteed to be ABI stable. This
option is intended to be used by vendors so they can avoid their users
from code that's not ready for production usage.
The option is enabled by default.
Differential Revision: https://reviews.llvm.org/D106763