This PR removes the old `nocapture` attribute, replacing it with the new
`captures` attribute introduced in #116990. This change is
intended to be essentially NFC, replacing existing uses of `nocapture`
with `captures(none)` without adding any new analysis capabilities.
Making use of non-`none` values is left for a followup.
Some notes:
* `nocapture` will be upgraded to `captures(none)` by the bitcode
reader.
* `nocapture` will also be upgraded by the textual IR reader. This is to
make it easier to use old IR files and somewhat reduce the test churn in
this PR.
* Helper APIs like `doesNotCapture()` will check for `captures(none)`.
* MLIR import will convert `captures(none)` into an `llvm.nocapture`
attribute. The representation in the LLVM IR dialect should be updated
separately.
This patch fixes a couple of places where memprof-related metadata
(!memprof and !callsite) were being dropped, and one place where PGO
metadata (!prof) was being dropped.
All were due to instances of combineMetadata() being invoked. That
function drops all metadata not in the list provided by the client, and
also drops any not in its switch statement.
Memprof metadata needed a case in the combineMetadata switch statement.
For now we simply keep the metadata of the instruction being kept, which
doesn't retain all the profile information when two calls with
memprof metadata are being combined, but at least retains some.
For the memprof metadata being dropped during call CSE, add memprof and
callsite metadata to the list of known ids in combineMetadataForCSE.
Neither memprof nor regular prof metadata were in the list of known ids
for the callsite in MemCpyOptimizer, which was added to combine AA
metadata after optimization of byval arguments fed by memcpy
instructions, and similar types of optimizations of memcpy uses.
There is one other callsite of combineMetadata, but it is only invoked
on load instructions, which do not carry these types of metadata.
Pass EarliestEscapeInfo to BatchAA in MemCpyOpt. This allows memcpy
elimination in cases where one of the involved pointers is captured
after the relevant memcpy/call.
We currently elide memcpys for readonly nocapture noalias arguments.
noalias is checked to make sure that there are no other ways to write
the memory, e.g. through a different argument or an escaped pointer.
In addition to the current noalias check, also query alias analysis, in
case it can prove that modification is not possible through other means.
This fixes the problem reported in
https://discourse.llvm.org/t/problem-about-memcpy-elimination/81121.
Call slot optimization may introduce writes to the destination object
that occur earlier than in the original function. We currently already
check that that the destination is dereferenceable and aligned, but we
do not make sure that it is writable. As such, we might introduce a
write to read-only memory, or introduce a data race.
Fix this by checking that the object is writable. For arguments, this is
indicated by the new writable attribute. Tests using
sret/dereferenceable are updated to use it.
The llvm.memcpy.inline intrinsic must be expanded into code that
does not contain any function calls because it is intended for
the implementation of low-level functions like memcpy. Currently the
MemCpyOpt might covert llvm.memcpy.inline into llvm.memmove in
certain circumstances. This patch fixes the issue.
Fixes https://github.com/llvm/llvm-project/issues/61791.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D147162
Another step towards getting rid of dependencies to the legacy
pass manager.
Primary change here is to just do -passes=foo instead of -foo in
simple situations (when running a single transform pass). But also
updated a few test running multiple passes.
Also removed some "duplicated" RUN lines in a few tests that where
using both -foo and -passes=foo syntax. No need to do the same kind
of testing twice.
As my goal is to remove at least _some_ functions from the static list
in MemoryBuiltins.cpp, these tests either need to run inferattrs or
statically declare these attributes to keep passing. A couple of tests
had alternate cases which are no longer meaningful, e.g.
`malloc-load-removal.ll`.
Differential Revision: https://reviews.llvm.org/D123087
The MemorySSA-based implementation has been enabled for a few months
(since D94376). This patch drops the old MDA-based implementation
entirely.
I've kept this to only the basic cleanup of dropping various
conditions -- the code could be further cleaned up now that there
is only one implementation.
Differential Revision: https://reviews.llvm.org/D102113
- Loads from the constant memory (either explicit one or as the source
of memory transfer intrinsics) won't alias any stores.
Reviewed By: asbirlea, efriedma
Differential Revision: https://reviews.llvm.org/D107605
Remove the `nosync` attribute from the memory intrinsic definitions
(i.e. memset, memcpy, memmove).
Like native memory accesses, memory intrinsics can be volatile. This is
indicated by an immarg in the intrinsic call. All else equal, a volatile
memory intrinsic is `sync`, so we cannot annotate the intrinsic functions
themselves as `nosync`. The attributor and function-attr passes know to
take the volatile bit into account.
Since `nosync` is a default attribute, this means we have to stop using
the DefaultAttrIntrinsic tablegen class for memory intrinsics, and
specify all default attributes other than `nosync` explicitly.
Most of the test changes are trivial churn, but one test case
(in nosync.ll) was in fact incorrect before this change.
Differential Revision: https://reviews.llvm.org/D102295
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
This is a straightforward port of MemCpyOpt to MemorySSA following
the approach of D26739. MemDep queries are replaced with MSSA queries
without changing the overall structure of the pass. Some care has
to be taken to account for differences between these APIs
(MemDep also returns reads, MSSA doesn't).
Differential Revision: https://reviews.llvm.org/D89207
D70365 allows us to make attributes default. This is a follow up to
actually make nosync, nofree and willreturn default. The approach we
chose, for now, is to opt-in to default attributes to avoid introducing
problems to target specific intrinsics. Intrinsics with default
attributes can be created using `DefaultAttrsIntrinsic` class.
After investigation by @asbirlea, the issue that caused the
revert appears to be an issue in the original source, rather
than a problem with the compiler.
This patch enables MemorySSA DSE again.
This reverts commit 915310bf14cbac58a81fd60e0fa9dc8d341108e2.
This adds an -enable-memcpyopt-memoryssa option that currently does
nothing apart from requiring MSSA as a dependency. The tests are
split to run both with the option disabled and enabled. I went with
this rather than the separate directory DSE uses, as I found it
convenient to have a direct side-by-side comparison of differences.
Differential Revision: https://reviews.llvm.org/D89206
There appears to be a mis-compile with MemorySSA-backed DSE in
combination with llvm.lifetime.end. It currently appears like
DSE is doing the right thing and the llvm.lifetime.end markers
are incorrect. The reverted patch uncovers the mis-compile.
This patch temporarily switches back to the legacy DSE
implementation, while we investigate.
This reverts commit 9d172c8e9c845a36b61dc12c27de8acdbef8b247.
This switches to using DSE + MemorySSA by default again, after
fixing the issues reported after the first commit.
Notable fixes fc8200633122, a0017c2bc258.
This reverts commit 3a59628f3cc26eb085acfc9cbdc97243ef71a6c5.
The tests have been updated and I plan to move them from the MSSA
directory up.
Some end-to-end tests needed small adjustments. One difference to the
legacy DSE is that legacy DSE also deletes trivially dead instructions
that are unrelated to memory operations. Because MemorySSA-backed DSE
just walks the MemorySSA, we only visit/check memory instructions. But
removing unrelated dead instructions is not really DSE's job and other
passes will clean up.
One noteworthy change is in llvm/test/Transforms/Coroutines/ArgAddr.ll,
but I think this comes down to legacy DSE not handling instructions that
may throw correctly in that case. To cover this with MemorySSA-backed
DSE, we need an update to llvm.coro.begin to treat it's return value to
belong to the same underlying object as the passed pointer.
There are some minor cases MemorySSA-backed DSE currently misses, e.g. related
to atomic operations, but I think those can be implemented after the switch.
This has been discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-August/144417.html
For the MultiSource/SPEC2000/SPEC2006 the number of eliminated stores
goes from ~17500 (legayc DSE) to ~26300 (MemorySSA-backed). More numbers
and details in the thread on llvm-dev.
Impact on CTMark:
```
Legacy Pass Manager
exec instrs size-text
O3 + 0.60% - 0.27%
ReleaseThinLTO + 1.00% - 0.42%
ReleaseLTO-g. + 0.77% - 0.33%
RelThinLTO (link only) + 0.87% - 0.42%
RelLO-g (link only) + 0.78% - 0.33%
```
http://llvm-compile-time-tracker.com/compare.php?from=3f22e96d95c71ded906c67067d75278efb0a2525&to=ae8be4642533ff03803967ee9d7017c0d73b0ee0&stat=instructions
```
New Pass Manager
exec instrs. size-text
O3 + 0.95% - 0.25%
ReleaseThinLTO + 1.34% - 0.41%
ReleaseLTO-g. + 1.71% - 0.35%
RelThinLTO (link only) + 0.96% - 0.41%
RelLO-g (link only) + 2.21% - 0.35%
```
http://195.201.131.214:8000/compare.php?from=3f22e96d95c71ded906c67067d75278efb0a2525&to=ae8be4642533ff03803967ee9d7017c0d73b0ee0&stat=instructions
Reviewed By: asbirlea, xbolva00, nikic
Differential Revision: https://reviews.llvm.org/D87163
Summary:
In D62801, new function attribute `willreturn` was introduced. In short, a function with `willreturn` is guaranteed to come back to the call site(more precise definition is in LangRef).
In this patch, willreturn is annotated for LLVM intrinsics.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: jvesely, nhaehnle, sstefan1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64904
llvm-svn: 367184
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
MemCpyOpt pass to cease using:
1) The old getAlignment() API of MemoryIntrinsic in favour of getting source & dest specific
alignments through the new API.
2) The old IRBuilder CreateMemCpy/CreateMemMove single-alignment APIs in favour of the new
API that allows setting source and destination alignments independently.
We also add a few tests to fill gaps in the testing of this pass.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960, rL325816, rL327398, rL327421 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 328097