…Stream.
CachedFileStream has previously performed the commit step in its
destructor, but this means its only recourse for error handling is
report_fatal_error. Modify this to add an explicit commit() method, and
call this in the appropriate places with appropriate error handling for
the location.
Currently the destructor of CacheStream gives an assert failure in Debug
builds if commit() was not called. This will help track down any
remaining uses of the API that assume the old destructior behaviour. In
Release builds we fall back to the previous behaviour and call
report_fatal_error if the commit fails.
This is version 2 of this PR, superseding reverted PR
https://github.com/llvm/llvm-project/pull/115331 . I have incorporated a
change to the testcase to make it more reliable on Windows, as well as
two follow-up changes
(df79000896
and
b0baa1d8bd)
that were also reverted when 115331 was reverted.
---------
Co-authored-by: Augie Fackler <augie@google.com>
Co-authored-by: Vitaly Buka <vitalybuka@google.com>
This reverts commit b0baa1d8bd68a2ce2f7c5f2b62333e410e9122a1.
Reverting follow-up commit to ce9e1d3c15ed6290f1cb07b482939976fa8115cd since the original commit test is flaky.
…Stream.
CachedFileStream has previously performed the commit step in its
destructor, but this means its only recourse for error handling is
report_fatal_error. Modify this to add an explicit commit() method, and
call this in the appropriate places with appropriate error handling for
the location.
Currently the destructor of CacheStream gives an assert failure in Debug
builds if commit() was not called. This will help track down any
remaining uses of the API that assume the old destructior behaviour. In
Release builds we fall back to the previous behaviour and call
report_fatal_error if the commit fails.
We've noticed that for large builds executing thin-link can take on the
order of 10s of minutes. We are only using a single thread to write the
sharded indices and import files for each input bitcode file. While we
need to ensure the index file produced lists modules in a deterministic
order, that doesn't prevent us from executing the rest of the work in
parallel.
In this change we use a thread pool to execute as much of the backend's
work as possible in parallel. In local testing on a machine with 80
cores, this change makes a thin-link for ~100,000 input files run in ~2
minutes. Without this change it takes upwards of 10 minutes.
---------
Co-authored-by: Nuri Amari <nuriamari@fb.com>
This is a printf style variadic function. If using a "%s" format, we
should pass "const char *" rather than "StringRef".
The use of data() here is safe because we know that the StringRef was
originally derived from a null-terminated string.
To get the time trace of LTO in the gold plugin, now we can pass the
`time-trace=<time trace file>` as well as
`time-trace-granularity=<granularity>` flags to LLVMgold.
Note that we still have to populate `LTOConfig::TimeTraceEnabled` and
`LTOConfig::TimeTraceGranularity` because ThinLTO backend needs them.
LLVMgold.so can be used with GNU ar, gold, ld, and nm to process LLVM
bitcode files. Install it in LLVM_INSTALL_TOOLCHAIN_ONLY=on builds like
we install libLTO.so.
Suggested by @emelife
Fix#84271
The convention is for such MC-specific options to reside in
MCTargetOptions. However, CompressDebugSections/RelaxELFRelocations do
not follow the convention: `CompressDebugSections` is defined in both
TargetOptions and MCAsmInfo and there is forwarding complexity.
Move the option to MCTargetOptions and hereby simplify the code. Rename
the misleading RelaxELFRelocations to X86RelaxRelocations. llvm-mc
-relax-relocations and llc -x86-relax-relocations can now be unified.
This will make it easy for callers to see issues with and fix up calls
to createTargetMachine after a future change to the params of
TargetMachine.
This matches other nearby enums.
For downstream users, this should be a fairly straightforward
replacement,
e.g. s/CodeGenOpt::Aggressive/CodeGenOptLevel::Aggressive
or s/CGFT_/CodeGenFileType::
This changes the definition if isSectionBitcode to only be valid for the
.llvm.lto section, since this API is only called from LTO, and the
.llvmbc section was not intended to be used for LTO. This allows the
gold plugin to keep its existing behavior without introducing any
significant changes.
Reviewed By: MaskRay, nikic
Differential Revision: https://reviews.llvm.org/D152973
This reverts commit 421e4026111315d002879b1e7a0cf3aacd00f488.
One of the test needs a requires line, but we've also seen some issues
for downstream projects that may need coordination, so I'm reverting
this for until we can address those issues. see
https://reviews.llvm.org/D152973#4520240 for context.
This changes the definition if `isSectionBitcode` to only be valid for the
`.llvm.lto` section, since this API is only called from LTO, and the
`.llvmbc` section was not intended to be used for LTO. This allows the
gold plugin to keep its existing behavior without introducing any
significant changes.
Depends on D146778
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D152973
Currently, the --thinlto-prefix-replace="oldpath;newpath" option is used during
distributed ThinLTO thin links to specify the mapping of the input bitcode object
files' directory tree (oldpath) to the directory tree (newpath) used for both:
1) the output files of the thin link itself (the .thinlto.bc index files and the
optional .imports files)
2) the specified object file paths written to the response file given in the
--thinlto-index-only=${response} option, which is used by the final native
link and must match the paths of the native object files that will be
produced by ThinLTO backend compiles.
This patch expands the --thinlto-prefix-replace option to allow a separate directory
tree mapping to be specified for the object file paths written to the response file
(number 2 above). This is important to support builds and build systems where the
same output directory may not be written by multiple build actions (e.g. the thin link
and the ThinLTO backend compiles).
The new format is: --thinlto-prefix-replace="origpath;outpath[;objpath]"
This replaces the origpath directory tree of the thin link input files with
outpath when writing the thin link index and imports outputs (number 1
above). If objpath is specified it replaces origpath of the input files with
objpath when writing the response file (number 2 above), otherwise it
falls back to the old behavior of using outpath for this as well.
Reviewed By: tejohnson, MaskRay
Differential Revision: https://reviews.llvm.org/D144596
The forwarding header is left in place because of its use in
`polly/lib/External/isl/interface/extract_interface.cc`, but I have
added a GCC warning about the fact it is deprecated, because it is used
in `isl` from where it is included by Polly.
Add free functions llvm::CodeGenOpt::{getLevel,getID,parseLevel} to
provide common implementations for functionality that has been
duplicated in many places across the codebase.
Differential Revision: https://reviews.llvm.org/D141968
This is a fairly large changeset, but it can be broken into a few
pieces:
- `llvm/Support/*TargetParser*` are all moved from the LLVM Support
component into a new LLVM Component called "TargetParser". This
potentially enables using tablegen to maintain this information, as
is shown in https://reviews.llvm.org/D137517. This cannot currently
be done, as llvm-tblgen relies on LLVM's Support component.
- This also moves two files from Support which use and depend on
information in the TargetParser:
- `llvm/Support/Host.{h,cpp}` which contains functions for inspecting
the current Host machine for info about it, primarily to support
getting the host triple, but also for `-mcpu=native` support in e.g.
Clang. This is fairly tightly intertwined with the information in
`X86TargetParser.h`, so keeping them in the same component makes
sense.
- `llvm/ADT/Triple.h` and `llvm/Support/Triple.cpp`, which contains
the target triple parser and representation. This is very intertwined
with the Arm target parser, because the arm architecture version
appears in canonical triples on arm platforms.
- I moved the relevant unittests to their own directory.
And so, we end up with a single component that has all the information
about the following, which to me seems like a unified component:
- Triples that LLVM Knows about
- Architecture names and CPUs that LLVM knows about
- CPU detection logic for LLVM
Given this, I have also moved `RISCVISAInfo.h` into this component, as
it seems to me to be part of that same set of functionality.
If you get link errors in your components after this patch, you likely
need to add TargetParser into LLVM_LINK_COMPONENTS in CMake.
Differential Revision: https://reviews.llvm.org/D137838
LTO code may end up mixing bitcode files from various sources varying in
their use of opaque pointer types. The current strategy to decide
between opaque / typed pointers upon the first bitcode file loaded does
not work here, since we could be loading a non-opaque bitcode file first
and would then be unable to load any files with opaque pointer types
later.
So for LTO this:
- Adds an `lto::Config::OpaquePointer` option and enforces an upfront
decision between the two modes.
- Adds `-opaque-pointers`/`-no-opaque-pointers` options to the gold
plugin; disabled by default.
- `--opaque-pointers`/`--no-opaque-pointers` options with
`-plugin-opt=-opaque-pointers`/`-plugin-opt=-no-opaque-pointers`
aliases to lld; disabled by default.
- Adds an `-lto-opaque-pointers` option to the `llvm-lto2` tool.
- Changes the clang driver to pass `-plugin-opt=-opaque-pointers` to
the linker in LTO modes when clang was configured with opaque
pointers enabled by default.
This fixes https://github.com/llvm/llvm-project/issues/55377
Differential Revision: https://reviews.llvm.org/D125847
This removes support for performing LTO using the legacy pass
manager in LLVMgold.so. Explicitly enabling the new pass manager
is retained as a no-op.
Differential Revision: https://reviews.llvm.org/D123294
Or rather, error out if it is set to something other than ON. This
removes the ability to enable the legacy pass manager by default,
but does not remove the ability to explicitly enable it through
various flags like -flegacy-pass-manager or -enable-new-pm=0.
I checked, and our test suite definitely doesn't pass with
LLVM_ENABLE_NEW_PASS_MANAGER=OFF anymore.
Differential Revision: https://reviews.llvm.org/D123126
This diff makes several amendments to the local file caching mechanism
which was migrated from ThinLTO to Support in
rGe678c51177102845c93529d457b020f969125373 in response to follow-up
discussion on that commit.
Patch By: noajshu
Differential Revision: https://reviews.llvm.org/D113080
We would like to move ThinLTO’s battle-tested file caching mechanism to
the LLVM Support library so that we can use it elsewhere in LLVM.
Patch By: noajshu
Differential Revision: https://reviews.llvm.org/D111371
We would like to move ThinLTO’s battle-tested file caching mechanism to
the LLVM Support library so that we can use it elsewhere in LLVM.
Patch By: noajshu
Differential Revision: https://reviews.llvm.org/D111371
In PGO, a C++ external linkage function `foo` has a private counter
`__profc_foo` and a private `__profd_foo` in a `comdat nodeduplicate`.
A `__attribute__((weak))` function `foo` has a weak hidden counter `__profc_foo`
and a private `__profd_foo` in a `comdat nodeduplicate`.
In `ld.lld a.o b.o`, say a.o defines an external linkage `foo` and b.o
defines a weak `foo`. Currently we treat `comdat nodeduplicate` as `comdat any`,
ld.lld will incorrectly consider `b.o:__profc_foo` non-prevailing. In the worst
case when `b.o:__profd_foo` is retained and `b.o:__profc_foo` isn't, there will
be dangling reference causing an `undefined hidden symbol` error.
Add SelectionKind to `Comdat` in IRSymtab and let linkers ignore nodeduplicate comdat.
Differential Revision: https://reviews.llvm.org/D106228
lld already marks shared library defs as ExportDynamic, which prevents
potentially unsafe devirtualization of symbols defined in shared
libraries. Match that behavior in the gold plugin, and add the same
test.
Depends on D96721.
Differential Revision: https://reviews.llvm.org/D96722
The gold LTO plugin uses a set of hooks to implements emit-llvm and capture intermediate file generated during LTO. The hooks are called by each lto backend thread with a taskID as argument to differentiate between threads and tasks. Currently, all threads are overwriting the same file which results into only the intermediate output of the last backend thread to be preserved. This diff encodes the taskID into the filename.
Reviewed By: tejohnson, wenlei
Differential Revision: https://reviews.llvm.org/D96173
Identify dynamically exported symbols (--export-dynamic[-symbol=],
--dynamic-list=, or definitions needed to preempt shared objects) and
prevent their LTO visibility from being upgraded.
This helps avoid use of whole program devirtualization when there may
be overrides in dynamic libraries.
Differential Revision: https://reviews.llvm.org/D91583
-DENABLE_EXPERIMENTAL_NEW_PASS_MANAGER=on configured LLD and LLVMgold.so
will use the new pass manager by default. Add an option to
use the legacy pass manager. This will also be used by the Clang driver
when -fno-new-pass-manager (D92915) / -fno-experimental-new-pass-manager is set.
Reviewed By: aeubanks, tejohnson
Differential Revision: https://reviews.llvm.org/D92916