When a conversion pattern is initialized without a type converter, the
driver implementation currently looks up the most recently mapped value.
This is undesirable because the most recently mapped value could be a
materialization. I.e., the type of the value being looked up could
depend on which other patterns have run before. Such an implementation
makes the type conversion infrastructure fragile and unpredictable.
The current implementation also contradicts the documentation in the
markdown file. According to that documentation, the values provided by
the adaptor should match the types of the operands of the match
operation when running without a type converter. This mechanism is not
desirable, either, for two reasons:
1. Some patterns have started to rely on receiving the most recently
mapped value. Changing the behavior to the documented behavior will
cause regressions. (And there would be no easy way to fix those without
forcing the use of a type converter or extending the `getRemappedValue`
API.)
2. It is more useful to receive the most recently mapped value. A value
of the original operand type can be retrieved by using the operand of
the matched operation. The adaptor is not needed at all in that case.
To implement the new behavior, materializations are now annotated with a
marker attribute. The marker is needed because not all
`unrealized_conversion_cast` ops are materializations that act as "pure
type conversions". E.g., when erasing an operation, its results are
mapped to newly-created "out-of-thin-air values", which are
materializations (with no input) that should be treated like regular
replacement values during a lookup. This marker-based lookup strategy is
also compatible with the One-Shot Dialect Conversion implementation
strategy, which does not utilize the mapping infrastructure anymore and
queries all necessary information by examining the IR.
There are two kind of materialization callbacks: one for target
materializations and one for source materializations. The callback type
for target materializations is `TargetMaterializationCallbackFn`. This
commit renames the one for source materializations from
`MaterializationCallbackFn` to `SourceMaterializationCallbackFn`, for
consistency.
There used to be a single callback type for both kind of
materializations, but the materialization function signatures have
changed over time.
Also clean up a few places in the documentation that still referred to
argument materializations.
Deprecate the `match` and `rewrite` functions. They mainly exist for
historic reasons. This PR also updates all remaining uses of in the MLIR
codebase.
This is addressing a
[comment](https://github.com/llvm/llvm-project/pull/129861#pullrequestreview-2662696084)
on an earlier PR.
Note for LLVM integration: `SplitMatchAndRewrite` will be deleted soon,
update your patterns to use `matchAndRewrite` instead of separate
`match` / `rewrite`.
---------
Co-authored-by: Jakub Kuderski <jakub@nod-labs.com>
This commit updates the internal `ConversionValueMapping` data structure
in the dialect conversion driver to support 1:N replacements. This is
the last major commit for adding 1:N support to the dialect conversion
driver.
Since #116470, the infrastructure already supports 1:N replacements. But
the `ConversionValueMapping` still stored 1:1 value mappings. To that
end, the driver inserted temporary argument materializations (converting
N SSA values into 1 value). This is no longer the case. Argument
materializations are now entirely gone. (They will be deleted from the
type converter after some time, when we delete the old 1:N dialect
conversion driver.)
Note for LLVM integration: Replace all occurrences of
`addArgumentMaterialization` (except for 1:N dialect conversion passes)
with `addSourceMaterialization`.
---------
Co-authored-by: Markus Böck <markus.boeck02@gmail.com>
The terms "legal type" and "illegal type" are ambiguous when talking
about materializations. E.g., for target materializations we do not
necessarily convert from illegal to legal types. We convert from the
most recently mapped value to the type that was produced by converting
the original type.
---------
Co-authored-by: Markus Böck <markus.boeck02@gmail.com>
This commit fixes a bug in the dialect conversion. During a 1:N
signature conversion, the dialect conversion did not insert a cast back
to the original block argument type, producing invalid IR.
See `test-block-legalization.mlir`: Without this commit, the operand
type of the op changes because an `unrealized_conversion_cast` is
missing:
```
"test.consumer_of_complex"(%v) : (!llvm.struct<(f64, f64)>) -> ()
```
To implement this fix, it was necessary to change the meaning of
argument materializations. An argument materialization now maps from the
new block argument types to the original block argument type. (It now
behaves almost like a source materialization.) This also addresses a
`FIXME` in the code base:
```
// FIXME: The current argument materialization hook expects the original
// output type, even though it doesn't use that as the actual output type
// of the generated IR. The output type is just used as an indicator of
// the type of materialization to do. This behavior is really awkward in
// that it diverges from the behavior of the other hooks, and can be
// easily misunderstood. We should clean up the argument hooks to better
// represent the desired invariants we actually care about.
```
It is no longer necessary to distinguish between the "output type" and
the "original output type".
Most type converter are already written according to the new API. (Most
implementations use the same conversion functions as for source
materializations.) One exception is the MemRef-to-LLVM type converter,
which materialized an `!llvm.struct` based on the elements of a memref
descriptor. It still does that, but casts the `!llvm.struct` back to the
original memref type. The dialect conversion inserts a target
materialization (to `!llvm.struct`) which cancels out with the other
cast.
This commit also fixes a bug in `computeNecessaryMaterializations`. The
implementation did not account for the possibility that a value was
replaced multiple times. E.g., replace `a` by `b`, then `b` by `c`.
This commit also adds a transform dialect op to populate SCF-to-CF
patterns. This transform op was needed to write a test case. The bug
described here appears only during a complex interplay of 1:N signature
conversions and op replacements. (I was not able to trigger it with ops
and patterns from the `test` dialect without duplicating the `scf.if`
pattern.)
Note for LLVM integration: Make sure that all
`addArgument/Source/TargetMaterialization` functions produce an SSA of
the specified type.
Depends on #98743.
This commit simplifies the handling of dropped arguments and updates
some dialect conversion documentation that is outdated.
When converting a block signature, a `BlockTypeConversionRewrite` object
and potentially multiple `ReplaceBlockArgRewrite` are created. During
the "commit" phase, uses of the old block arguments are replaced with
the new block arguments, but the old implementation was written in an
inconsistent way: some block arguments were replaced in
`BlockTypeConversionRewrite::commit` and some were replaced in
`ReplaceBlockArgRewrite::commit`. The new
`BlockTypeConversionRewrite::commit` implementation is much simpler and
no longer modifies any IR; that is done only in `ReplaceBlockArgRewrite`
now. The `ConvertedArgInfo` data structure is no longer needed.
To that end, materializations of dropped arguments are now built in
`applySignatureConversion` instead of `materializeLiveConversions`; the
latter function no longer has to deal with dropped arguments.
Other minor improvements:
- Improve variable name: `origOutputType` -> `origArgType`. Add an
assertion to check that this field is only used for argument
materializations.
- Add more comments to `applySignatureConversion`.
Note: Error messages around failed materializations for dropped basic
block arguments changed slightly. That is because those materializations
are now built in `legalizeUnresolvedMaterialization` instead of
`legalizeConvertedArgumentTypes`.
This commit is in preparation of decoupling argument/source/target
materializations from the dialect conversion.
This commit simplifies and improves documentation for the part of the
`ConversionPatternRewriter` API that deals with signature conversions.
There are now two public functions for signature conversion:
* `applySignatureConversion` converts a single block signature. This
function used to take a `Region *` (but converted only the entry block).
It now takes a `Block *`.
* `convertRegionTypes` converts all block signatures of a region.
`convertNonEntryRegionTypes` is removed because it is not widely used
and can easily be expressed with a call to `applySignatureConversion`
inside a loop. (See `Detensorize.cpp` for an example.)
Note: For consistency, `convertRegionTypes` could be renamed to
`applySignatureConversion` (overload) in the future. (Or
`applySignatureConversion` renamed to `convertBlockTypes`.)
Also clarify when a type converter and/or signature conversion object is
needed and for what purpose.
Internal code refactoring (NFC) of `ConversionPatternRewriterImpl` (the
part that deals with signature conversions). This part of the codebase
was quite convoluted and unintuitive.
From a functional perspective, this change is NFC. However, the public
API changes, thus not marking as NFC.
Note for LLVM integration: When you see
`applySignatureConversion(region, ...)`, replace with
`applySignatureConversion(region->front(), ...)`. In the unlikely case
that you see `convertNonEntryRegionTypes`, apply the same changes as
this commit did to `Detensorize.cpp`.
---------
Co-authored-by: Markus Böck <markus.boeck02@gmail.com>
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
Fix confusing diagnostic during partial dialect conversion. A failure to
legalize is not the same as an operation being illegal: for eg. an
operation neither explicity marked legal nor explicitly marked illegal
could have been generated and may have failed to legalize further. The
op isn't an illegal one per
https://mlir.llvm.org/docs/DialectConversion/#conversion-target
which is an op that is explicitly marked illegal.
Differential Revision: https://reviews.llvm.org/D116152
MLIR supports recursive types but they could not be handled by the conversion
infrastructure directly as it would result in infinite recursion in
`convertType` for elemental types. Support this case by keeping the "call
stack" of nested type conversions in the TypeConverter class and by passing it
as an optional argument to the individual conversion callback. The callback can
then check if a specific type is present on the stack more than once to detect
and handle the recursive case.
This approach is preferred to the alternative approach of having a separate
callback dedicated to handling only the recursive case as the latter was
observed to introduce ~3% time overhead on a 50MB IR file even if it did not
contain recursive types.
This approach is also preferred to keeping a local stack in type converters
that need to handle recursive types as that would compose poorly in case of
out-of-tree or cross-project extensions.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D113579
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
This is redundant with the callback variant and untested. Also remove
the callback-less methods for adding a dynamically legal op, as they
are no longer useful.
Differential Revision: https://reviews.llvm.org/D106786
This infrastructure has evolved a lot over the course of MLIRs lifetime, and has never truly been documented outside of rationale or proposals. This revision aims to document the infrastructure and user facing API, with the rationale specific portions moved to the Rationale folder and updated.
Differential Revision: https://reviews.llvm.org/D85260
This revision updates the documentation for dialect conversion, as many concepts have changed/evolved over time.
Differential Revision: https://reviews.llvm.org/D85167
This revision removes the TypeConverter parameter passed to the apply* methods, and instead moves the responsibility of region type conversion to patterns. The types of a region can be converted using the 'convertRegionTypes' method, which acts similarly to the existing 'applySignatureConversion'. This method ensures that all blocks within, and including those moved into, a region will have the block argument types converted using the provided converter.
This has the benefit of making more of the legalization logic controlled by patterns, instead of being handled explicitly by the driver. It also opens up the possibility to support multiple type conversions at some point in the future.
This revision also adds a new utility class `FailureOr<T>` that provides a LogicalResult friendly facility for returning a failure or a valid result value.
Differential Revision: https://reviews.llvm.org/D81681
Dialect conversion infrastructure supports 1->N type conversions by requiring
individual conversions to provide facilities to generate operations
retrofitting N values into 1 of the original type when N > 1. This
functionality can also be used to materialize explicit "cast"-like operations,
but it did not support 1->1 type conversions until now. Modify TypeConverter to
support materialization of cast operations for 1-1 conversions.
This also makes materialization specification more extensible following the
same pattern as type conversions. Instead of overloading a virtual function,
users or subclasses of TypeConversion can now register type-specific
materialization callbacks that will be called in order for the given type.
Differential Revision: https://reviews.llvm.org/D79729
Summary:
This revision refactors the TypeConverter class to not use inheritance to add type conversions. It instead moves to a registration based system, where conversion callbacks are added to the converter with `addConversion`. This method takes a conversion callback, which must be convertible to any of the following forms(where `T` is a class derived from `Type`:
* Optional<Type> (T type)
- This form represents a 1-1 type conversion. It should return nullptr
or `llvm::None` to signify failure. If `llvm::None` is returned, the
converter is allowed to try another conversion function to perform
the conversion.
* Optional<LogicalResult>(T type, SmallVectorImpl<Type> &results)
- This form represents a 1-N type conversion. It should return
`failure` or `llvm::None` to signify a failed conversion. If the new
set of types is empty, the type is removed and any usages of the
existing value are expected to be removed during conversion. If
`llvm::None` is returned, the converter is allowed to try another
conversion function to perform the conversion.
When attempting to convert a type, the TypeConverter walks each of the registered converters starting with the one registered most recently.
Differential Revision: https://reviews.llvm.org/D74584
Summary: This allows for providing a default "catchall" legality check that is not dependent on specific operations or dialects. For example, this can be useful to check legality based on the specific types of operation operands or results.
Differential Revision: https://reviews.llvm.org/D73379