Now that MLIR accepts nuw and nusw in getelementptr, this patch emits
the inbounds and nuw attributes when lower memref to LLVM in load and
store operators.
This patch also strengthens the memref.load and memref.store spec about
undefined behaviour during lowering.
This patch also lifts the |rewriter| parameter in getStridedElementPtr
ahead so that LLVM::GEPNoWrapFlags can be added at the end with a
default value and grouped together with other operators' parameters.
Signed-off-by: Lin, Peiyong <linpyong@gmail.com>
Certain GPU->NVVM patterns compete with Arith->LLVM patterns. (The ones
that lower to libdevice.) Add an optional `benefit` parameter to all
`populate` functions so that users can give preference to GPU->NVVM
patterns.
LLVM itself is generally moving away from using `undef` and towards
using `poison`, to the point of having a lint that caches new uses of
`undef` in tests.
In order to not trip the lint on new patterns and to conform to the
evolution of LLVM
- Rename valious ::undef() methods on StructBuilder subclasses to
::poison()
- Audit the uses of UndefOp in the MLIR libraries and replace almost all
of them with PoisonOp
The remaining uses of `undef` are initializing `uninitialized` memrefs,
explicit conversions to undef from SPIR-V, and a few cases in
AMDGPUToROCDL where usage like
%v = insertelement <M x iN> undef, iN %v, i32 0
%arg = bitcast <M x iN> %v to i(M * N)
is used to handle "i32" arguments that are are really packed vectors of
smaller types that won't always be fully initialized.
This commit marks the type converter in `populate...` functions as
`const`. This is useful for debugging.
Patterns already take a `const` type converter. However, some
`populate...` functions do not only add new patterns, but also add
additional type conversion rules. That makes it difficult to find the
place where a type conversion was added in the code base. With this
change, all `populate...` functions that only populate pattern now have
a `const` type converter. Programmers can then conclude from the
function signature that these functions do not register any new type
conversion rules.
Also some minor cleanups around the 1:N dialect conversion
infrastructure, which did not always pass the type converter as a
`const` object internally.
I'm planning to remove StringRef::equals in favor of
StringRef::operator==.
- StringRef::operator==/!= outnumber StringRef::equals by a factor of
10 under mlir/ in terms of their usage.
- The elimination of StringRef::equals brings StringRef closer to
std::string_view, which has operator== but not equals.
- S == "foo" is more readable than S.equals("foo"), especially for
!Long.Expression.equals("str") vs Long.Expression != "str".
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
Unsigned integer types are supported in subgroup mma ops by matching
against arith.extui ops. This allows for subgroup_mma_compute ops with
mixed signedness which requires later conversions to handle this. SPIR-V
cooperative matrix ops support this while the lowering to WMMA does not.
Differential Revision: https://reviews.llvm.org/D143922
Add support for loading, computing, and storing `gpu.subgroup` WMMA ops
in transpose mode as well. Update the GPU to NVVM lowerings to support
`transpose` mode and update integration tests as well.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D139021
Enables transposed gpu.subgroup_mma_load_matrix and updates the lowerings in Vector to GPU and GPU to SPIRV. Needed to enable B transpose matmuls lowering to wmma ops.
Taken over from author: stanley-nod <stanley@nod-labs.com>
Reviewed By: ThomasRaoux, antiagainst
Differential Revision: https://reviews.llvm.org/D138770
This allows for incrementally updating the old API usages without
needing to update everything at once. These will be left on Both
for a little bit and then flipped to prefixed when all APIs have been
updated.
Differential Revision: https://reviews.llvm.org/D134386
This patch "modernizes" the LLVM `insertvalue` and `extractvalue`
operations to use DenseI64ArrayAttr, since they only require an array of
indices and previously there was confusion about whether to use i32 or
i64 arrays, and to use assembly format.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D131537
The maxf implementation of wmma elementwise op was incorrect as the
operands of the select to check for Nan were swapped.
Differential Revision: https://reviews.llvm.org/D127879
insert is soft deprecated, so remove all references so it's less likely
to be used and can be easily removed in the future.
Differential Revision: https://reviews.llvm.org/D120021
Support load with broadcast, elementwise divf op and remove the
hardcoded restriction on the vector size. Picking the right size should
be enfored by user and will fail conversion to llvm/spirv if it is not
supported.
Differential Revision: https://reviews.llvm.org/D113618
Use existing helper instead of handling only a subset of indices lowering
arithmetic. Also relax the restriction on the memref rank for the GPU mma ops
as we can now support any rank.
Differential Revision: https://reviews.llvm.org/D113383
In order to support fusion with mma matrix type we need to be able to
execute elementwise operations on them. This add an op to be able to
support some basic elementwise operations. This is a is not a full
solution as it only supports a limited scope or operations. Ideally we would
want to be able to fuse with more kind of operations.
Differential Revision: https://reviews.llvm.org/D112857
wmma intrinsics have a large number of combinations, ideally we want to be able
to target all the different variants. To avoid a combinatorial explosion in the
number of mlir op we use attributes to represent the different variation of
load/store/mma ops. We also can generate with tablegen helpers to know which
combinations are available. Using this we can avoid having too hardcode a path
for specific shapes and can support more types.
This patch also adds boiler plates for tf32 op support.
Differential Revision: https://reviews.llvm.org/D112689
Allow lowering of wmma ops with 64bits indexes. Change the default
version of the test to use default layout.
Differential Revision: https://reviews.llvm.org/D112479
This commits updates the remaining usages of the ArrayRef<Value> based
matchAndRewrite/rewrite methods in favor of the new OpAdaptor
overload.
Differential Revision: https://reviews.llvm.org/D110360
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: herhut, silvas
Differential Revision: https://reviews.llvm.org/D105625
This allow creating a matrix with all elements set to a given value. This is
needed to be able to implement a simple dot op.
Differential Revision: https://reviews.llvm.org/D103870
Consolidate the type conversion in a single function to make it simpler
to use. This allow to re-use the type conversion for up coming ops.
Differential Revision: https://reviews.llvm.org/D103868
In order to allow large matmul operations using the MMA ops we need to chain
operations this is not possible unless "DOp" and "COp" type have matching
layout so remove the "DOp" layout and force accumulator and result type to
match.
Added a test for the case where the MMA value is accumulated.
Differential Revision: https://reviews.llvm.org/D103023