Extend the "storage class" <-> "memory space" map for the Vulkan SPIR-V
environment to include the Image class. 12 is chosen as the next
available value in the MemRef memory space list.
Signed-off-by: Jack Frankland <jack.frankland@arm.com>
There is no good way to report detailed errors from inside
`Pass::initializeOptions` function as context may not be available at
this point and writing directly to `llvm::errs()` is not composable.
See
https://github.com/llvm/llvm-project/pull/87166#discussion_r1546426763
* Add error handler callback to `Pass::initializeOptions`
* Update `PassOptions::parseFromString` to support custom error stream
instead of using `llvm::errs()` directly.
* Update default `Pass::initializeOptions` implementation to propagate
error string from `parseFromString` to new error handler.
* Update `MapMemRefStorageClassPass` to report error details using new
API.
Clean up the code before making more substantial changes. NFC modulo
extra error checking and physical storage buffer storage class handling.
* Add switch case for physical storage buffer
* Handle type conversion failures
* Inline methods to reduce scrolling
* Other minor cleanups
Functions are always callable operations and thus every operation
implementing the `FunctionOpInterface` also implements the
`CallableOpInterface`. The only exception was the FuncOp in the toy
example. To make implementation of the `FunctionOpInterface` easier,
this commit lets `FunctionOpInterface` inherit from
`CallableOpInterface` and merges some of their methods. More precisely,
the `CallableOpInterface` has methods to get the argument and result
attributes and a method to get the result types of the callable region.
These methods are always implemented the same way as their analogues in
`FunctionOpInterface` and thus this commit moves all the argument and
result attribute handling methods to the callable interface as well as
the methods to get the argument and result types. The
`FuntionOpInterface` then does not have to declare them as well, but
just inherits them from the `CallableOpInterface`.
Adding the inheritance relation also required to move the
`FunctionOpInterface` from the IR directory to the Interfaces directory
since IR should not depend on Interfaces.
Reviewed By: jpienaar, springerm
Differential Revision: https://reviews.llvm.org/D157988
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
This is a purely mechanical change that introduces an enum attribute in the GPU
dialect to represent the various memref memory spaces as opposed to the
hard-coded integer attributes that are currently used.
The following steps were taken to make the transition across the codebase:
1. Introduce a pass "gpu-lower-memory-space-attributes":
The pass updates all memref types that have a memory space attribute that is a
`gpu::AddressSpaceAttr`. These attributes are changed to `IntegerAttr`'s using a
mapping that is given by the caller. This pass is based on the
"map-memref-spirv-storage-class" pass and the common functions can probably
be refactored into a set of utilities under the MemRef dialect.
2. Update the verifiers of GPU/NVGPU dialect operations.
If a verifier currently checks the address space of an operand using
e.g.`getWorkspaceAddressSpace`, then it can continue to do so. However, the
checks are changed to only fail if the memory space is either missing or a wrong
value of type `gpu::AddressSpaceAttr`. Otherwise, it just assumes the address
space is correct because it was specifically lowered to something other than a
`gpu::AddressSpaceAttr`.
3. Update existing gpu-to-llvm conversion infrastructure.
In the existing gpu-to-X passes, we add a full conversion equivalent to
`gpu-lower-memory-space-attributes` just before doing the conversion to the
LLVMDialect. This is done because currently both the gpu-to-llvm passes
(rocdl,nvvm) run gpu-to-gpu rewrites within the pass, which introduce
`AddressSpaceAttr` memory space annotations. Therefore, I inserted the
memory space conversion between the gpu-to-gpu rewrites and the LLVM
conversion.
For more context see the below discourse discussion:
https://discourse.llvm.org/t/gpu-workgroup-shared-memory-address-space-is-hard-coded/
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D140644
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
MemRef memory space actually can be an attribute. Update the
map function signature to accept an attribute. The default
mappings can still only covers numeric ones, but this allows
downstream callers to extend with custom memory spaces.
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D138257
Checks spirv::TargetEnv from op to see if it contains either Kernel or Shader capabilities.
If it does, then it will set the memory space mapping accordingly.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D134317
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
This makes it easier to use as a utility function to query the
mappings, including the reverse.
This commit also drops some storage classes that aren't needed
for now.
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D131411
* Avoid restricting the pass to to builtin module ops. The pass
should be able to run on any region ops.
* Avoid hardcoding func FuncOp when handling functions. Instead,
use the function op interface.
* Assigns the default mapping in the constructor. So for cases
where we are using the pass in a pipeline, we still have a
meaningful default.
Along the way, dropped uncessary unrealized conversion casts and
use full conversion. The pass should be able to convert all sorts
of ops; there is really no need to have such bridages.
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D131409
Previously we are using IntegerAttr to back all SPIR-V enum
attributes. Therefore we all such attributes are showed like
IntegerAttr in IRs, which is barely readable and breaks
roundtripability of the IR. This commit changes to use
`EnumAttr` as the base directly so that we can have separate
attribute definitions and better IR printing.
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D131311
MemRef types now can carry an attribute to represent the memory
space. Still, upper layers in the compilation stack mostly use
nuemric values. They don't mean much (other than differentiating
separate memory domains) in MLIR's multi-level settings. Those
numeric memory space inside MemRef types need to be translated
into concrete SPIR-V storage classes during lowering to pin down
to concrete memory types.
Thus far we have been hardcoding an arbitrary mapping from memory
space to storage class for converting MemRef types. This works fine
for only targeting Vulkan; it falls apart if we want to target other
SPIR-V consumers like OpenCL, as different consumers might want
different storage classes for the buffer/variable of the same
lifetime. For example, StorageClass in Vulkan vs. CrossWorkgroup
in OpenCL.
So putting up a new pass to let the user to control how to map
MemRef memory spaces into SPIR-V storage classes. This provides
more flexibility and can address the awkwardness in the current
SPIR-V type converter. This pass should be the prelimiary step
towards lowering MemRef related types/ops into SPIR-V.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D130317