These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
This is an implementation for [RFC: Supporting Sub-Channel Quantization
in
MLIR](https://discourse.llvm.org/t/rfc-supporting-sub-channel-quantization-in-mlir/82694).
In order to make the review process easier, the PR has been divided into
the following commit labels:
1. **Add implementation for sub-channel type:** Includes the class
design for `UniformQuantizedSubChannelType`, printer/parser and bytecode
read/write support. The existing types (per-tensor and per-axis) are
unaltered.
2. **Add implementation for sub-channel type:** Lowering of
`quant.qcast` and `quant.dcast` operations to Linalg operations.
3. **Adding C/Python Apis:** We first define he C-APIs and build the
Python-APIs on top of those.
4. **Add pass to normalize generic ....:** This pass normalizes
sub-channel quantized types to per-tensor per-axis types, if possible.
A design note:
- **Explicitly storing the `quantized_dimensions`, even when they can be
derived for ranked tensor.**
While it's possible to infer quantized dimensions from the static shape
of the scales (or zero-points) tensor for ranked
data tensors
([ref](https://discourse.llvm.org/t/rfc-supporting-sub-channel-quantization-in-mlir/82694/3)
for background), there are cases where this can lead to ambiguity and
issues with round-tripping.
```
Consider the example: tensor<2x4x!quant.uniform<i8:f32:{0:2, 0:2}, {{s00:z00, s01:z01}}>>
```
The shape of the scales tensor is [1, 2], which might suggest that only
axis 1 is quantized. While this inference is technically correct, as the
block size for axis 0 is a degenerate case (equal to the dimension
size), it can cause problems with round-tripping. Therefore, even for
ranked tensors, we are explicitly storing the quantized dimensions.
Suggestions welcome!
PS: I understand that the upcoming holidays may impact your schedule, so
please take your time with the review. There's no rush.
This is a code cleanup. Update a few places in MLIR that should use
`hasSingleElement`/`getSingleElement`.
Note: `hasSingleElement` is faster than `.getSize() == 1` when it is
used with linked lists etc.
Depends on #131508.
This commit updates the internal `ConversionValueMapping` data structure
in the dialect conversion driver to support 1:N replacements. This is
the last major commit for adding 1:N support to the dialect conversion
driver.
Since #116470, the infrastructure already supports 1:N replacements. But
the `ConversionValueMapping` still stored 1:1 value mappings. To that
end, the driver inserted temporary argument materializations (converting
N SSA values into 1 value). This is no longer the case. Argument
materializations are now entirely gone. (They will be deleted from the
type converter after some time, when we delete the old 1:N dialect
conversion driver.)
Note for LLVM integration: Replace all occurrences of
`addArgumentMaterialization` (except for 1:N dialect conversion passes)
with `addSourceMaterialization`.
---------
Co-authored-by: Markus Böck <markus.boeck02@gmail.com>
[APFloat::getSmallest](915df1ae41/llvm/include/llvm/ADT/APFloat.h (L1060))
(and similarly `APFloat:getLargest`)
```
APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
```
return the positive number when the default value for the second
argument is used.
With that being said, the check
[QuantTypes.cpp#L325](96f37ae453/mlir/lib/Dialect/Quant/IR/QuantTypes.cpp (L325))
```c++
if (scale <= 0.0 || std::isinf(scale) || std::isnan(scale))
return emitError() << "illegal scale: " << scale;
```
is already covered by the check which follows
[QuantTypes.cpp#L327](96f37ae453/mlir/lib/Dialect/Quant/IR/QuantTypes.cpp (L327))
```c++
if (scale < minScale || scale > maxScale)
return emitError() << "scale out of expressed type range [" << minScale
<< ", " << maxScale << "]";
```
given that range `[positive-smallest-finite-number,
positive-largest-finite-number]` does not include `inf` and `nan`s.
I propose to remove the redundant check. Any suggestion for improving
the error message is welcome.
When a type/attribute is defined in TableGen, a type constraint can be
used for parameters, but the type constraint verification was missing.
Example:
```
def TestTypeVerification : Test_Type<"TestTypeVerification"> {
let parameters = (ins AnyTypeOf<[I16, I32]>:$param);
// ...
}
```
No verification code was generated to ensure that `$param` is I16 or
I32.
When type constraints a present, a new method will generated for types
and attributes: `verifyInvariantsImpl`. (The naming is similar to op
verifiers.) The user-provided verifier is called `verify` (no change).
There is now a new entry point to type/attribute verification:
`verifyInvariants`. This function calls both `verifyInvariantsImpl` and
`verify`. If neither of those two verifications are present, the
`verifyInvariants` function is not generated.
When a type/attribute is not defined in TableGen, but a verifier is
needed, users can implement the `verifyInvariants` function. (This
function was previously called `verify`.)
Note for LLVM integration: If you have an attribute/type that is not
defined in TableGen (i.e., just C++), you have to rename the
verification function from `verify` to `verifyInvariants`. (Most
attributes/types have no verification, in which case there is nothing to
do.)
Depends on #102657.
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
* https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…"
* Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This follows a previous patch that updated calls
`op.cast<T>()-> cast<T>(op)`. However some cases could not handle an
unprefixed `cast` call due to occurrences of variables named cast, or
occurring inside of class definitions which would resolve to the method.
All C++ files that did not work automatically with `cast<T>()` are
updated here to `llvm::cast` and similar with the intention that they
can be easily updated after the methods are removed through a
find-replace.
See https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
for the clang-tidy check that is used and then update printed
occurrences of the function to include `llvm::` before.
One can then run the following:
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-export-fixes /tmp/cast/casts.yaml mlir/*\
-header-filter=mlir/ -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D150348
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
Add bytecode encoding for quantized types. These mostly follow the
storage representation of these.
Differential Revision: https://reviews.llvm.org/D136004
* https://discourse.llvm.org/t/rfc-removing-the-quant-dialect/3643/8
* Removes most ops. Leaves casts given final comment (can remove more in a followup).
* There are a few uses in Tosa keeping some of the utilities alive. In a followup, I will probably elect to just move simplified versions of them into Tosa itself vs having this quasi-library dependency.
Differential Revision: https://reviews.llvm.org/D120204
There are a lot of cases where we accidentally ignored the result of some
parsing hook. Mark ParseResult as LLVM_NODISCARD just like ParseResult is.
This exposed some stuff to clean up, so do.
Differential Revision: https://reviews.llvm.org/D125549
This allows for inferring the result types of operations in certain situations by using the type of
an operand. This commit allowed for automatically supporting type inference for many more
operations with no additional effort, e.g. nearly all Arithmetic operations now support
result type inferrence with no additional changes.
Differential Revision: https://reviews.llvm.org/D124581
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
A lot of dialects have dependencies that are unnecessary, either because of copy/paste
of files when creating things or some other means. This commit cleans up a bunch of
the simple ones:
* Copy/Paste or missed during refactoring
Most of the dependencies cleaned up here look like copy/paste errors when creating
new dialects/transformations, or because the dependency wasn't removed during a
refactoring (e.g. when splitting the standard dialect).
* Unnecessary hard coding of constant operations in matchers
There are a few instances where a dialect had a dependency because it
was hardcoding checks for constant operations instead of using the better m_Constant
approach.
Differential Revision: https://reviews.llvm.org/D118062
The only benefit of FunctionPass is that it filters out function
declarations. This isn't enough to justify carrying it around, as we can
simplify filter out declarations when necessary within the pass. We can
also explore with better scheduling primitives to filter out declarations
at the pipeline level in the future.
The definition of FunctionPass is left intact for now to allow time for downstream
users to migrate.
Differential Revision: https://reviews.llvm.org/D117182
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
DialectAsmParser::parseKeyword is rejecting `'i' digit+` while it is
a valid identifier according to mlir/docs/LangRef.md.
Integer types actually used to be TOK_KEYWORD a while back before the
change: 6af866c58d.
This patch Modifies `isCurrentTokenAKeyword` to return true for tokens that
match integer types too.
The motivation for this change is the parsing of `!fir.type<{` `component-name: component-type,`+ `}>`
type in FIR that represent Fortran derived types. The component-names are
parsed as keywords, and can very well be i32 or any ixxx (which are
valid Fortran derived type component names).
The Quant dialect type parser had to be modified since it relied on `iw` not
being parsed as keywords.
Differential Revision: https://reviews.llvm.org/D108913
* Previously, we were only generating .h.inc files. We foresee the need to also generate implementations and this is a step towards that.
* Discussed in https://llvm.discourse.group/t/generating-cpp-inc-files-for-dialects/3732/2
* Deviates from the discussion above by generating a default constructor in the .cpp.inc file (and adding a tablegen bit that disables this in case if this is user provided).
* Generating the destructor started as a way to flush out the missing includes (produces a link error), but it is a strict improvement on its own that is worth doing (i.e. by emitting key methods in the .cpp file, we root vtables in one translation unit, which is a non-controversial improvement).
Differential Revision: https://reviews.llvm.org/D105070
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028