These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
`PassManager::run` loads the dependent dialects for each pass into the
current context prior to invoking the individual passes. If the
dependent dialect is already loaded into the context, this should be a
no-op. However, if there are extensions registered in the
`DialectRegistry`, the dependent dialects are unconditionally registered
into the context.
This poses a problem for dynamic pass pipelines, however, because they
will likely be executing while the context is in an immutable state
(because of the parent pass pipeline being run).
To solve this, we'll update the extension registration API on
`DialectRegistry` to require a type ID for each extension that is
registered. Then, instead of unconditionally registered dialects into a
context if extensions are present, we'll check against the extension
type IDs already present in the context's internal `DialectRegistry`.
The context will only be marked as dirty if there are net-new extension
types present in the `DialectRegistry` populated by
`PassManager::getDependentDialects`.
Note: this PR removes the `addExtension` overload that utilizes
`std::function` as the parameter. This is because `std::function` is
copyable and potentially allocates memory for the contained function so
we can't use the function pointer as the unique type ID for the
extension.
Downstream changes required:
- Existing `DialectExtension` subclasses will need a type ID to be
registered for each subclass. More details on how to register a type ID
can be found here:
8b68e06731/mlir/include/mlir/Support/TypeID.h (L30)
- Existing uses of the `std::function` overload of `addExtension` will
need to be refactored into dedicated `DialectExtension` classes with
associated type IDs. The attached `std::function` can either be inlined
into or called directly from `DialectExtension::apply`.
---------
Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
This commit fixes a bug in the dialect conversion. During a 1:N
signature conversion, the dialect conversion did not insert a cast back
to the original block argument type, producing invalid IR.
See `test-block-legalization.mlir`: Without this commit, the operand
type of the op changes because an `unrealized_conversion_cast` is
missing:
```
"test.consumer_of_complex"(%v) : (!llvm.struct<(f64, f64)>) -> ()
```
To implement this fix, it was necessary to change the meaning of
argument materializations. An argument materialization now maps from the
new block argument types to the original block argument type. (It now
behaves almost like a source materialization.) This also addresses a
`FIXME` in the code base:
```
// FIXME: The current argument materialization hook expects the original
// output type, even though it doesn't use that as the actual output type
// of the generated IR. The output type is just used as an indicator of
// the type of materialization to do. This behavior is really awkward in
// that it diverges from the behavior of the other hooks, and can be
// easily misunderstood. We should clean up the argument hooks to better
// represent the desired invariants we actually care about.
```
It is no longer necessary to distinguish between the "output type" and
the "original output type".
Most type converter are already written according to the new API. (Most
implementations use the same conversion functions as for source
materializations.) One exception is the MemRef-to-LLVM type converter,
which materialized an `!llvm.struct` based on the elements of a memref
descriptor. It still does that, but casts the `!llvm.struct` back to the
original memref type. The dialect conversion inserts a target
materialization (to `!llvm.struct`) which cancels out with the other
cast.
This commit also fixes a bug in `computeNecessaryMaterializations`. The
implementation did not account for the possibility that a value was
replaced multiple times. E.g., replace `a` by `b`, then `b` by `c`.
This commit also adds a transform dialect op to populate SCF-to-CF
patterns. This transform op was needed to write a test case. The bug
described here appears only during a complex interplay of 1:N signature
conversions and op replacements. (I was not able to trigger it with ops
and patterns from the `test` dialect without duplicating the `scf.if`
pattern.)
Note for LLVM integration: Make sure that all
`addArgument/Source/TargetMaterialization` functions produce an SSA of
the specified type.
Depends on #98743.
This reverts commit edbc0e30a9e587cee1189be023b9385adc2f239a.
Reason for rollback. ASAN complains about this PR:
==4320==ERROR: AddressSanitizer: heap-use-after-free on address 0x502000006cd8 at pc 0x55e2978d63cf bp 0x7ffe6431c2b0 sp 0x7ffe6431c2a8
READ of size 8 at 0x502000006cd8 thread T0
#0 0x55e2978d63ce in map<llvm::MutableArrayRef<mlir::BlockArgument> &, llvm::MutableArrayRef<mlir::BlockArgument>, nullptr> mlir/include/mlir/IR/IRMapping.h:40:11
#1 0x55e2978d63ce in mlir::createFused(mlir::LoopLikeOpInterface, mlir::LoopLikeOpInterface, mlir::RewriterBase&, std::__u::function<llvm::SmallVector<mlir::Value, 6u> (mlir::OpBuilder&, mlir::Location, llvm::ArrayRef<mlir::BlockArgument>)>, llvm::function_ref<void (mlir::RewriterBase&, mlir::LoopLikeOpInterface, mlir::LoopLikeOpInterface&, mlir::IRMapping)>) mlir/lib/Interfaces/LoopLikeInterface.cpp:156:11
#2 0x55e2952a614b in mlir::fuseIndependentSiblingForLoops(mlir::scf::ForOp, mlir::scf::ForOp, mlir::RewriterBase&) mlir/lib/Dialect/SCF/Utils/Utils.cpp:1398:43
#3 0x55e291480c6f in mlir::transform::LoopFuseSiblingOp::apply(mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) mlir/lib/Dialect/SCF/TransformOps/SCFTransformOps.cpp:482:17
#4 0x55e29149ed5e in mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Model<mlir::transform::LoopFuseSiblingOp>::apply(mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.h.inc:477:56
#5 0x55e297494a60 in apply blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.cpp.inc:61:14
#6 0x55e297494a60 in mlir::transform::TransformState::applyTransform(mlir::transform::TransformOpInterface) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:953:48
#7 0x55e294646a8d in applySequenceBlock(mlir::Block&, mlir::transform::FailurePropagationMode, mlir::transform::TransformState&, mlir::transform::TransformResults&) mlir/lib/Dialect/Transform/IR/TransformOps.cpp:1788:15
#8 0x55e29464f927 in mlir::transform::NamedSequenceOp::apply(mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) mlir/lib/Dialect/Transform/IR/TransformOps.cpp:2155:10
#9 0x55e2945d28ee in mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Model<mlir::transform::NamedSequenceOp>::apply(mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.h.inc:477:56
#10 0x55e297494a60 in apply blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.cpp.inc:61:14
#11 0x55e297494a60 in mlir::transform::TransformState::applyTransform(mlir::transform::TransformOpInterface) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:953:48
#12 0x55e2974a5fe2 in mlir::transform::applyTransforms(mlir::Operation*, mlir::transform::TransformOpInterface, mlir::RaggedArray<llvm::PointerUnion<mlir::Operation*, mlir::Attribute, mlir::Value>> const&, mlir::transform::TransformOptions const&, bool) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:2016:16
#13 0x55e2945888d7 in mlir::transform::applyTransformNamedSequence(mlir::RaggedArray<llvm::PointerUnion<mlir::Operation*, mlir::Attribute, mlir::Value>>, mlir::transform::TransformOpInterface, mlir::ModuleOp, mlir::transform::TransformOptions const&) mlir/lib/Dialect/Transform/Transforms/TransformInterpreterUtils.cpp:234:10
#14 0x55e294582446 in (anonymous namespace)::InterpreterPass::runOnOperation() mlir/lib/Dialect/Transform/Transforms/InterpreterPass.cpp:147:16
#15 0x55e2978e93c6 in operator() mlir/lib/Pass/Pass.cpp:527:17
#16 0x55e2978e93c6 in void llvm::function_ref<void ()>::callback_fn<mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int)::$_1>(long) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
#17 0x55e2978e207a in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
#18 0x55e2978e207a in executeAction<mlir::PassExecutionAction, mlir::Pass &> mlir/include/mlir/IR/MLIRContext.h:275:7
#19 0x55e2978e207a in mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) mlir/lib/Pass/Pass.cpp:521:21
#20 0x55e2978e5fbf in runPipeline mlir/lib/Pass/Pass.cpp:593:16
#21 0x55e2978e5fbf in mlir::PassManager::runPasses(mlir::Operation*, mlir::AnalysisManager) mlir/lib/Pass/Pass.cpp:904:10
#22 0x55e2978e5b65 in mlir::PassManager::run(mlir::Operation*) mlir/lib/Pass/Pass.cpp:884:60
#23 0x55e291ebb460 in performActions(llvm::raw_ostream&, std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::MLIRContext*, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:408:17
#24 0x55e291ebabd9 in processBuffer mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:481:9
#25 0x55e291ebabd9 in operator() mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:548:12
#26 0x55e291ebabd9 in llvm::LogicalResult llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>::callback_fn<mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&)::$_0>(long, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
#27 0x55e297b1cffe in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
#28 0x55e297b1cffe in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef)::$_0::operator()(llvm::StringRef) const mlir/lib/Support/ToolUtilities.cpp:86:16
#29 0x55e297b1c9c5 in interleave<const llvm::StringRef *, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), (lambda at llvm/include/llvm/ADT/STLExtras.h:2147:49), void> llvm/include/llvm/ADT/STLExtras.h:2125:3
#30 0x55e297b1c9c5 in interleave<llvm::SmallVector<llvm::StringRef, 8U>, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), llvm::raw_ostream, llvm::StringRef> llvm/include/llvm/ADT/STLExtras.h:2147:3
#31 0x55e297b1c9c5 in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef) mlir/lib/Support/ToolUtilities.cpp:89:3
#32 0x55e291eb0cf0 in mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:551:10
#33 0x55e291eb115c in mlir::MlirOptMain(int, char**, llvm::StringRef, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:589:14
#34 0x55e291eb15f8 in mlir::MlirOptMain(int, char**, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:605:10
#35 0x55e29130d1be in main mlir/tools/mlir-opt/mlir-opt.cpp:311:33
#36 0x7fbcf3fff3d3 in __libc_start_main (/usr/grte/v5/lib64/libc.so.6+0x613d3) (BuildId: 9a996398ce14a94560b0c642eb4f6e94)
#37 0x55e2912365a9 in _start /usr/grte/v5/debug-src/src/csu/../sysdeps/x86_64/start.S:120
0x502000006cd8 is located 8 bytes inside of 16-byte region [0x502000006cd0,0x502000006ce0)
freed by thread T0 here:
#0 0x55e29130b7e2 in operator delete(void*, unsigned long) compiler-rt/lib/asan/asan_new_delete.cpp:155:3
#1 0x55e2979eb657 in __libcpp_operator_delete<void *, unsigned long>
#2 0x55e2979eb657 in __do_deallocate_handle_size<>
#3 0x55e2979eb657 in __libcpp_deallocate
#4 0x55e2979eb657 in deallocate
#5 0x55e2979eb657 in deallocate
#6 0x55e2979eb657 in operator()
#7 0x55e2979eb657 in ~vector
#8 0x55e2979eb657 in mlir::Block::~Block() mlir/lib/IR/Block.cpp:24:1
#9 0x55e2979ebc17 in deleteNode llvm/include/llvm/ADT/ilist.h:42:39
#10 0x55e2979ebc17 in erase llvm/include/llvm/ADT/ilist.h:205:5
#11 0x55e2979ebc17 in erase llvm/include/llvm/ADT/ilist.h:209:39
#12 0x55e2979ebc17 in mlir::Block::erase() mlir/lib/IR/Block.cpp:67:28
#13 0x55e297aef978 in mlir::RewriterBase::eraseBlock(mlir::Block*) mlir/lib/IR/PatternMatch.cpp:245:10
#14 0x55e297af0563 in mlir::RewriterBase::inlineBlockBefore(mlir::Block*, mlir::Block*, llvm::ilist_iterator<llvm::ilist_detail::node_options<mlir::Operation, false, false, void, false, void>, false, false>, mlir::ValueRange) mlir/lib/IR/PatternMatch.cpp:331:3
#15 0x55e297af06d8 in mlir::RewriterBase::mergeBlocks(mlir::Block*, mlir::Block*, mlir::ValueRange) mlir/lib/IR/PatternMatch.cpp:341:3
#16 0x55e297036608 in mlir::scf::ForOp::replaceWithAdditionalYields(mlir::RewriterBase&, mlir::ValueRange, bool, std::__u::function<llvm::SmallVector<mlir::Value, 6u> (mlir::OpBuilder&, mlir::Location, llvm::ArrayRef<mlir::BlockArgument>)> const&) mlir/lib/Dialect/SCF/IR/SCF.cpp:575:12
#17 0x55e2970673ca in mlir::detail::LoopLikeOpInterfaceInterfaceTraits::Model<mlir::scf::ForOp>::replaceWithAdditionalYields(mlir::detail::LoopLikeOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::RewriterBase&, mlir::ValueRange, bool, std::__u::function<llvm::SmallVector<mlir::Value, 6u> (mlir::OpBuilder&, mlir::Location, llvm::ArrayRef<mlir::BlockArgument>)> const&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Interfaces/LoopLikeInterface.h.inc:658:56
#18 0x55e2978d5feb in replaceWithAdditionalYields blaze-out/k8-opt-asan/bin/mlir/include/mlir/Interfaces/LoopLikeInterface.cpp.inc:105:14
#19 0x55e2978d5feb in mlir::createFused(mlir::LoopLikeOpInterface, mlir::LoopLikeOpInterface, mlir::RewriterBase&, std::__u::function<llvm::SmallVector<mlir::Value, 6u> (mlir::OpBuilder&, mlir::Location, llvm::ArrayRef<mlir::BlockArgument>)>, llvm::function_ref<void (mlir::RewriterBase&, mlir::LoopLikeOpInterface, mlir::LoopLikeOpInterface&, mlir::IRMapping)>) mlir/lib/Interfaces/LoopLikeInterface.cpp:135:14
#20 0x55e2952a614b in mlir::fuseIndependentSiblingForLoops(mlir::scf::ForOp, mlir::scf::ForOp, mlir::RewriterBase&) mlir/lib/Dialect/SCF/Utils/Utils.cpp:1398:43
#21 0x55e291480c6f in mlir::transform::LoopFuseSiblingOp::apply(mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) mlir/lib/Dialect/SCF/TransformOps/SCFTransformOps.cpp:482:17
#22 0x55e29149ed5e in mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Model<mlir::transform::LoopFuseSiblingOp>::apply(mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.h.inc:477:56
#23 0x55e297494a60 in apply blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.cpp.inc:61:14
#24 0x55e297494a60 in mlir::transform::TransformState::applyTransform(mlir::transform::TransformOpInterface) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:953:48
#25 0x55e294646a8d in applySequenceBlock(mlir::Block&, mlir::transform::FailurePropagationMode, mlir::transform::TransformState&, mlir::transform::TransformResults&) mlir/lib/Dialect/Transform/IR/TransformOps.cpp:1788:15
#26 0x55e29464f927 in mlir::transform::NamedSequenceOp::apply(mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) mlir/lib/Dialect/Transform/IR/TransformOps.cpp:2155:10
#27 0x55e2945d28ee in mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Model<mlir::transform::NamedSequenceOp>::apply(mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.h.inc:477:56
#28 0x55e297494a60 in apply blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.cpp.inc:61:14
#29 0x55e297494a60 in mlir::transform::TransformState::applyTransform(mlir::transform::TransformOpInterface) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:953:48
#30 0x55e2974a5fe2 in mlir::transform::applyTransforms(mlir::Operation*, mlir::transform::TransformOpInterface, mlir::RaggedArray<llvm::PointerUnion<mlir::Operation*, mlir::Attribute, mlir::Value>> const&, mlir::transform::TransformOptions const&, bool) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:2016:16
#31 0x55e2945888d7 in mlir::transform::applyTransformNamedSequence(mlir::RaggedArray<llvm::PointerUnion<mlir::Operation*, mlir::Attribute, mlir::Value>>, mlir::transform::TransformOpInterface, mlir::ModuleOp, mlir::transform::TransformOptions const&) mlir/lib/Dialect/Transform/Transforms/TransformInterpreterUtils.cpp:234:10
#32 0x55e294582446 in (anonymous namespace)::InterpreterPass::runOnOperation() mlir/lib/Dialect/Transform/Transforms/InterpreterPass.cpp:147:16
#33 0x55e2978e93c6 in operator() mlir/lib/Pass/Pass.cpp:527:17
#34 0x55e2978e93c6 in void llvm::function_ref<void ()>::callback_fn<mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int)::$_1>(long) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
#35 0x55e2978e207a in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
#36 0x55e2978e207a in executeAction<mlir::PassExecutionAction, mlir::Pass &> mlir/include/mlir/IR/MLIRContext.h:275:7
#37 0x55e2978e207a in mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) mlir/lib/Pass/Pass.cpp:521:21
#38 0x55e2978e5fbf in runPipeline mlir/lib/Pass/Pass.cpp:593:16
#39 0x55e2978e5fbf in mlir::PassManager::runPasses(mlir::Operation*, mlir::AnalysisManager) mlir/lib/Pass/Pass.cpp:904:10
#40 0x55e2978e5b65 in mlir::PassManager::run(mlir::Operation*) mlir/lib/Pass/Pass.cpp:884:60
#41 0x55e291ebb460 in performActions(llvm::raw_ostream&, std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::MLIRContext*, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:408:17
#42 0x55e291ebabd9 in processBuffer mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:481:9
#43 0x55e291ebabd9 in operator() mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:548:12
#44 0x55e291ebabd9 in llvm::LogicalResult llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>::callback_fn<mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&)::$_0>(long, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
#45 0x55e297b1cffe in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
#46 0x55e297b1cffe in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef)::$_0::operator()(llvm::StringRef) const mlir/lib/Support/ToolUtilities.cpp:86:16
#47 0x55e297b1c9c5 in interleave<const llvm::StringRef *, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), (lambda at llvm/include/llvm/ADT/STLExtras.h:2147:49), void> llvm/include/llvm/ADT/STLExtras.h:2125:3
#48 0x55e297b1c9c5 in interleave<llvm::SmallVector<llvm::StringRef, 8U>, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), llvm::raw_ostream, llvm::StringRef> llvm/include/llvm/ADT/STLExtras.h:2147:3
#49 0x55e297b1c9c5 in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef) mlir/lib/Support/ToolUtilities.cpp:89:3
#50 0x55e291eb0cf0 in mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:551:10
#51 0x55e291eb115c in mlir::MlirOptMain(int, char**, llvm::StringRef, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:589:14
previously allocated by thread T0 here:
#0 0x55e29130ab5d in operator new(unsigned long) compiler-rt/lib/asan/asan_new_delete.cpp:86:3
#1 0x55e2979ed5d4 in __libcpp_operator_new<unsigned long>
#2 0x55e2979ed5d4 in __libcpp_allocate
#3 0x55e2979ed5d4 in allocate
#4 0x55e2979ed5d4 in __allocate_at_least<std::__u::allocator<mlir::BlockArgument> >
#5 0x55e2979ed5d4 in __split_buffer
#6 0x55e2979ed5d4 in mlir::BlockArgument* std::__u::vector<mlir::BlockArgument, std::__u::allocator<mlir::BlockArgument>>::__push_back_slow_path<mlir::BlockArgument const&>(mlir::BlockArgument const&)
#7 0x55e2979ec0f2 in push_back
#8 0x55e2979ec0f2 in mlir::Block::addArgument(mlir::Type, mlir::Location) mlir/lib/IR/Block.cpp:154:13
#9 0x55e29796e457 in parseRegionBody mlir/lib/AsmParser/Parser.cpp:2172:34
#10 0x55e29796e457 in (anonymous namespace)::OperationParser::parseRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:2121:7
#11 0x55e29796b25e in (anonymous namespace)::CustomOpAsmParser::parseRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:1785:16
#12 0x55e297035742 in mlir::scf::ForOp::parse(mlir::OpAsmParser&, mlir::OperationState&) mlir/lib/Dialect/SCF/IR/SCF.cpp:521:14
#13 0x55e291322c18 in llvm::ParseResult llvm::detail::UniqueFunctionBase<llvm::ParseResult, mlir::OpAsmParser&, mlir::OperationState&>::CallImpl<llvm::ParseResult (*)(mlir::OpAsmParser&, mlir::OperationState&)>(void*, mlir::OpAsmParser&, mlir::OperationState&) llvm/include/llvm/ADT/FunctionExtras.h:220:12
#14 0x55e29795bea3 in operator() llvm/include/llvm/ADT/FunctionExtras.h:384:12
#15 0x55e29795bea3 in callback_fn<llvm::unique_function<llvm::ParseResult (mlir::OpAsmParser &, mlir::OperationState &)> > llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
#16 0x55e29795bea3 in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
#17 0x55e29795bea3 in parseOperation mlir/lib/AsmParser/Parser.cpp:1521:9
#18 0x55e29795bea3 in parseCustomOperation mlir/lib/AsmParser/Parser.cpp:2017:19
#19 0x55e29795bea3 in (anonymous namespace)::OperationParser::parseOperation() mlir/lib/AsmParser/Parser.cpp:1174:10
#20 0x55e297971d20 in parseBlockBody mlir/lib/AsmParser/Parser.cpp:2296:9
#21 0x55e297971d20 in (anonymous namespace)::OperationParser::parseBlock(mlir::Block*&) mlir/lib/AsmParser/Parser.cpp:2226:12
#22 0x55e29796e4f5 in parseRegionBody mlir/lib/AsmParser/Parser.cpp:2184:7
#23 0x55e29796e4f5 in (anonymous namespace)::OperationParser::parseRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:2121:7
#24 0x55e29796b25e in (anonymous namespace)::CustomOpAsmParser::parseRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:1785:16
#25 0x55e29796b2cf in (anonymous namespace)::CustomOpAsmParser::parseOptionalRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:1796:12
#26 0x55e2978d89ff in mlir::function_interface_impl::parseFunctionOp(mlir::OpAsmParser&, mlir::OperationState&, bool, mlir::StringAttr, llvm::function_ref<mlir::Type (mlir::Builder&, llvm::ArrayRef<mlir::Type>, llvm::ArrayRef<mlir::Type>, mlir::function_interface_impl::VariadicFlag, std::__u::basic_string<char, std::__u::char_traits<char>, std::__u::allocator<char>>&)>, mlir::StringAttr, mlir::StringAttr) mlir/lib/Interfaces/FunctionImplementation.cpp:232:14
#27 0x55e2969ba41d in mlir::func::FuncOp::parse(mlir::OpAsmParser&, mlir::OperationState&) mlir/lib/Dialect/Func/IR/FuncOps.cpp:203:10
#28 0x55e291322c18 in llvm::ParseResult llvm::detail::UniqueFunctionBase<llvm::ParseResult, mlir::OpAsmParser&, mlir::OperationState&>::CallImpl<llvm::ParseResult (*)(mlir::OpAsmParser&, mlir::OperationState&)>(void*, mlir::OpAsmParser&, mlir::OperationState&) llvm/include/llvm/ADT/FunctionExtras.h:220:12
#29 0x55e29795bea3 in operator() llvm/include/llvm/ADT/FunctionExtras.h:384:12
#30 0x55e29795bea3 in callback_fn<llvm::unique_function<llvm::ParseResult (mlir::OpAsmParser &, mlir::OperationState &)> > llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
#31 0x55e29795bea3 in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
#32 0x55e29795bea3 in parseOperation mlir/lib/AsmParser/Parser.cpp:1521:9
#33 0x55e29795bea3 in parseCustomOperation mlir/lib/AsmParser/Parser.cpp:2017:19
#34 0x55e29795bea3 in (anonymous namespace)::OperationParser::parseOperation() mlir/lib/AsmParser/Parser.cpp:1174:10
#35 0x55e297959b78 in parse mlir/lib/AsmParser/Parser.cpp:2725:20
#36 0x55e297959b78 in mlir::parseAsmSourceFile(llvm::SourceMgr const&, mlir::Block*, mlir::ParserConfig const&, mlir::AsmParserState*, mlir::AsmParserCodeCompleteContext*) mlir/lib/AsmParser/Parser.cpp:2785:41
#37 0x55e29790d5c2 in mlir::parseSourceFile(std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::Block*, mlir::ParserConfig const&, mlir::LocationAttr*) mlir/lib/Parser/Parser.cpp:46:10
#38 0x55e291ebbfe2 in parseSourceFile<mlir::ModuleOp, const std::__u::shared_ptr<llvm::SourceMgr> &> mlir/include/mlir/Parser/Parser.h:159:14
#39 0x55e291ebbfe2 in parseSourceFile<mlir::ModuleOp> mlir/include/mlir/Parser/Parser.h:189:10
#40 0x55e291ebbfe2 in mlir::parseSourceFileForTool(std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::ParserConfig const&, bool) mlir/include/mlir/Tools/ParseUtilities.h:31:12
#41 0x55e291ebb263 in performActions(llvm::raw_ostream&, std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::MLIRContext*, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:383:33
#42 0x55e291ebabd9 in processBuffer mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:481:9
#43 0x55e291ebabd9 in operator() mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:548:12
#44 0x55e291ebabd9 in llvm::LogicalResult llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>::callback_fn<mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&)::$_0>(long, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
#45 0x55e297b1cffe in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
#46 0x55e297b1cffe in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef)::$_0::operator()(llvm::StringRef) const mlir/lib/Support/ToolUtilities.cpp:86:16
#47 0x55e297b1c9c5 in interleave<const llvm::StringRef *, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), (lambda at llvm/include/llvm/ADT/STLExtras.h:2147:49), void> llvm/include/llvm/ADT/STLExtras.h:2125:3
#48 0x55e297b1c9c5 in interleave<llvm::SmallVector<llvm::StringRef, 8U>, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), llvm::raw_ostream, llvm::StringRef> llvm/include/llvm/ADT/STLExtras.h:2147:3
#49 0x55e297b1c9c5 in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef) mlir/lib/Support/ToolUtilities.cpp:89:3
#50 0x55e291eb0cf0 in mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:551:10
#51 0x55e291eb115c in mlir::MlirOptMain(int, char**, llvm::StringRef, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:589:14
#52 0x55e291eb15f8 in mlir::MlirOptMain(int, char**, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:605:10
#53 0x55e29130d1be in main mlir/tools/mlir-opt/mlir-opt.cpp:311:33
#54 0x7fbcf3fff3d3 in __libc_start_main (/usr/grte/v5/lib64/libc.so.6+0x613d3) (BuildId: 9a996398ce14a94560b0c642eb4f6e94)
#55 0x55e2912365a9 in _start /usr/grte/v5/debug-src/src/csu/../sysdeps/x86_64/start.S:120
SUMMARY: AddressSanitizer: heap-use-after-free mlir/include/mlir/IR/IRMapping.h:40:11 in map<llvm::MutableArrayRef<mlir::BlockArgument> &, llvm::MutableArrayRef<mlir::BlockArgument>, nullptr>
Shadow bytes around the buggy address:
0x502000006a00: fa fa 00 fa fa fa 00 00 fa fa 00 fa fa fa 00 fa
0x502000006a80: fa fa 00 fa fa fa 00 00 fa fa 00 00 fa fa 00 00
0x502000006b00: fa fa 00 00 fa fa 00 00 fa fa 00 fa fa fa 00 fa
0x502000006b80: fa fa 00 fa fa fa 00 fa fa fa 00 00 fa fa 00 00
0x502000006c00: fa fa 00 00 fa fa 00 00 fa fa 00 00 fa fa fd fa
=>0x502000006c80: fa fa fd fa fa fa fd fd fa fa fd[fd]fa fa fd fd
0x502000006d00: fa fa 00 fa fa fa 00 fa fa fa 00 fa fa fa 00 fa
0x502000006d80: fa fa 00 fa fa fa 00 fa fa fa 00 fa fa fa 00 fa
0x502000006e00: fa fa 00 fa fa fa 00 fa fa fa 00 00 fa fa 00 fa
0x502000006e80: fa fa 00 fa fa fa 00 00 fa fa 00 fa fa fa 00 fa
0x502000006f00: fa fa 00 fa fa fa 00 fa fa fa 00 fa fa fa 00 fa
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
==4320==ABORTING
The refactor had a bug where the fused loop was inserted in an incorrect
location. This patch fixes the bug and relands the original PR
https://github.com/llvm/llvm-project/pull/94391.
This patch refactors code related to LoopFuseSiblingOp transform in
attempt to reduce duplicate common code. The aim is to refactor as much
as possible to a functions on LoopLikeOpInterfaces, but this is still a
work in progress. A full refactor will require more additions to the
LoopLikeOpInterface.
In addition, scf.parallel fusion support has been added.
This patch refactors code related to `LoopFuseSiblingOp` transform in
attempt to reduce duplicate common code. The aim is to refactor as much
as possible to a functions on `LoopLikeOpInterface`s, but this is still
a work in progress. A full refactor will require more additions to the
`LoopLikeOpInterface`.
In addition, `scf.parallel` fusion support has been added.
Unroll And Jam was supported in affine dialect long time ago using pass.
This commit exposes the pattern using transform and in addition adds
partial support for SCF loops.
This patch adds more precise side effects to the current ops with memory
effects, allowing us to determine which OpOperand/OpResult/BlockArgument
the
operation reads or writes, rather than just recording the reading and
writing
of values. This allows for convenient use of precise side effects to
achieve
analysis and optimization.
Related discussions:
https://discourse.llvm.org/t/rfc-add-operandindex-to-sideeffect-instance/79243
Currently, during a loop pipelining transformation, operations may be
hoisted out without any checks on the loop bounds, which leads to
incorrect transformations and unexpected behaviour. The following [issue
](https://github.com/llvm/llvm-project/issues/90870) describes the
problem more extensively, including an example.
The proposed fix adds some check in the loop bounds before and applies
the maximum hoisting.
There is currently no path to lower scf.forall to scf.parallel with the
goal of targeting the OpenMP dialect.
In the SCF->ControlFlow conversion, scf.forall is briefly converted to
scf.parallel, but the scf.parallel is lowered directly to a sequential
loop. This makes experimenting with scf.forall for CPU execution
difficult.
This change factors out the rewrite in the SCF->ControlFlow pass into a
utility function that can then be used in the SCF->ControlFlow lowering
and via a separate -scf-forall-to-parallel pass.
---------
Co-authored-by: Spenser Bauman <sabauma@fastmail>
This PR extracts the existing `scf.forall` to `scf.for` conversion logic
inside a transform op (https://github.com/llvm/llvm-project/pull/65474)
into a standalone function which can be used in other transformations
and adds a `scf-forall-to-for` pass.
As part of this extension this change also does some general cleanup
1) Make all the methods take `RewriterBase` as arguments instead of
creating their own builders that tend to crash when used within
pattern rewrites
2) Split `coalesePerfectlyNestedLoops` into two separate methods, one
for `scf.for` and other for `affine.for`. The templatization didnt
seem to be buying much there.
Also general clean up of tests.
Adds support for fusing two scf.for loops occurring in the same block.
Uses the rudimentary checks already in place for scf.forall (like the
target loop's operands being dominated by the source loop).
- Fixes a bug in the dominance check whereby it was checked that values
in the target loop themselves dominated the source loop rather than the
ops that define these operands.
- Renames the LoopFuseSibling op to LoopFuseSiblingOp.
- Updates LoopFuseSiblingOp's description.
- Adds tests for using LoopFuseSiblingOp on scf.for loops, including one
which fails without the fix for the dominance check.
- Adds tests checking the different failure modes of the dominance
checker.
- Adds test for case whereby scf.yield is automatically generated when
there are no loop-carried variables.
Transform interfaces are implemented, direction or via extensions, in
libraries belonging to multiple other dialects. Those dialects don't
need to depend on the non-interface part of the transform dialect, which
includes the growing number of ops and transitive dependency footprint.
Split out the interfaces into a separate library. This in turn requires
flipping the dependency from the interface on the dialect that has crept
in because both co-existed in one library. The interface shouldn't
depend on the transform dialect either.
As a consequence of splitting, the capability of the interpreter to
automatically walk the payload IR to identify payload ops of a certain
kind based on the type used for the entry point symbol argument is
disabled. This is a good move by itself as it simplifies the interpreter
logic. This functionality can be trivially replaced by a
`transform.structured.match` operation.
There is a use case that we need to peel the first iteration out of the
for loop so that the peeled forOp can be canonicalized away and the
fillOp can be fused into the inner forall loop. For example, we have
nested loops as below
```
linalg.fill ins(...) outs(...)
scf.for %arg = %lb to %ub step %step
scf.forall ...
```
After the peeling transform, it is expected to be
```
scf.forall ...
linalg.fill ins(...) outs(...)
scf.for %arg = %(lb + step) to %ub step %step
scf.forall ...
```
This patch makes the most use of the existing peeling functions and adds
support for peeling the first iteration out of the loop.
This patch updates `transform.loop.peel` so that this Op returns two
rather than one handle:
* one for the peeled loop, and
* one for the remainder loop.
Also, following this change this Op will fail if peeling fails. This is
consistent with other similar Ops that also fail if no transformation
takes place.
Relands #67482 with an extra fix for transform_loop_ext.py
This patch updates `transform.loop.peel` so that this Op returns two
rather than one handle:
* one for the peeled loop, and
* one for the remainder loop.
Also, following this change this Op will fail if peeling fails. This is
consistent with other similar Ops that also fail if no transformation
takes place.
Add a straightforward sequentialization transform from `scf.forall` to a
nest of `scf.for` in absence of results and expose it as a transform op.
This is helpful in combination with other transform ops, particularly
fusion, that work best on parallel-by-construction `scf.forall` but
later need to target sequential `for` loops.
This change adds a method to modify the ConversionTarget used during
`transform.apply_conversion_patterns` to the
`ConversionPatternDescriptorOpInterface`. This is needed when the TypeConverter
is used to dictate the dynamic legality of operations, as in "structural"
conversion patterns present in, for example, the SCF and func dialects.
As a first use case/test, this change also adds a
`transform.apply_patterns.scf.structural_conversions` operation to the SCF
dialect.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D158672
This patch adds a new transform operation `transform.loop.fuse_sibling`,
which given two loops, fuses them, assuming that they are independent.
The transform operation itself performs very basic checks to ensure
IR legality, and leaves the responsibility of ensuring independence on the user.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D157069
This transform op promotes loops with one iteration. I.e., the loop op is replaced by just the loop body.
Differential Revision: https://reviews.llvm.org/D154361
All `apply` functions now have a `TransformRewriter &` parameter. This rewriter should be used to modify the IR. It has a `TrackingListener` attached and updates the internal handle-payload mappings based on rewrites.
Implementations no longer need to create their own `TrackingListener` and `IRRewriter`. Error checking is integrated into `applyTransform`. Tracking listener errors are reported only for ops with the `ReportTrackingListenerFailuresOpTrait` trait attached, allowing for a gradual migration. Furthermore, errors can be silenced with an op attribute.
Additional API will be added to `TransformRewriter` in subsequent revisions. This revision just adds an "empty" `TransformRewriter` class and updates all `apply` implementations.
Differential Revision: https://reviews.llvm.org/D152427
* Remove `transform::PatternRegistry`.
* Add a new op for each currently registered pattern set.
* Change names of vector dialect pattern selector ops, so that they are consistent with the remaining code base.
* Remove redundant `transform.vector.extract_address_computations` op.
Differential Revision: https://reviews.llvm.org/D152249
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
Outlining is particularly interesting when the outlined function is
replaced with something else, e.g., a microkernel. It is good to have a
handle to the call in this case.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D149849
Given an scf.if conditional, using this transformation is akin to injecting
user-specified information that it is always safe to execute only the specified
`if` or `else` branch.
This is achieved by just replacing the scf.if by the content of one of its
branches.
This is particularly useful for user-controlled rewriting of conditionals
that exist solely to guard against out-of-bounds behavior.
At the moment, no assume or assert operation is emitted as it is not always
desirable. In the future, this may be controlled by a dedicated attribute.
Differential Revision: https://reviews.llvm.org/D148125
Simplify the handling of silenceable failures in the transform dialect.
Previously, the logic of `TransformEachOpTrait` required that
`applyToEach` returned a list of null pointers when a silenceable
failure was emitted. This was not done consistently and also crept into
ops without this trait although they did not require it. Handle this
case earlier in the interpreter and homogeneously associated preivously
unset transform dialect values (both handles and parameters) with empty
lists of the matching kind. Ignore the results of `applyToEach` for the
targets for which it produced a silenceable failure. As a result, one
never needs to set results to lists containing nulls. Furthermore, the
objects associated with transform dialect values must never be null.
Depends On D140980
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D141305
This patch made a minor refactor of LoopCoalescing.cpp's walkLoops
templated method and placed it in Affine's LoopUtils.cpp/h.
This method is also renamed as coalescePerfectlyNestedLoops method. This
minor change enables this method to be invoked
by both the original LoopCoalescing pass as well as the newly introduced
loop.coalesce transform op.
The loop.coalesce transform op has the ability to coalesce affine, and
scf loop nests, leveraging existing LoopCoalescing
mechanism. I have created it inside the SCFTransformOps.td instead of
AffineTransformOps.td as it feels to be similar
in spirit as the loop.unroll op that can handle both scf and affine
loops. Please let me know if you feel that this op
should be moved into AffineTransformOps.td instead.
The testcase added illustrates loop.coalesce transform op working for
scf, affine loops (inner, outer) as well as
coalesced loop can be further unrolled (achieving composibility).
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D141202
Adapt the implementation of TransformEachOpTrait to the existence of
parameter values recently introduced into the transform dialect. In
particular, allow `applyToOne` hooks to return a list containing a mix
of `Operation *` that will be associated with handles and `Attribute`
that will be associated with parameter values by the trait
implementation of the transform interface's `apply` method.
Disentangle the "transposition" of the list of per-payload op partial
results to decrease its overall complexity and detemplatize the code
that doesn't really need templates. This removes the poorly documented
special handling for single-result ops with TransformEachOpTrait that
could have assigned null pointer values to handles.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D140979
Now we have more convenient functions to construct silenceable errors
while emitting diagnostics, and the constructor is ambiguous as it
doesn't tell whether the logical error is silencebale or definite.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D137257
mlir/lib/Dialect/SCF/TransformOps/SCFTransformOps.cpp(42): error C2446: ':': no conversion from 'OpTy' to 'OpTy'
with
[
OpTy=mlir::scf::ForOp
]
and
[
OpTy=mlir::AffineForOp
]
mlir/lib/Dialect/SCF/TransformOps/SCFTransformOps.cpp(42): note: No user-defined-conversion operator available that can perform this conversion, or the operator cannot be called
This patch consolidates the two transform ops from the affine dialect
and the scf dialect to avoid code duplication.
This is to address the review comments from
https://reviews.llvm.org/D137997.
The transform ops directory / file structure for the affine dialect is
kept for the purpose of forth-coming transform ops
for affine, but get_parent_for and unroll are removed.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D138980
The transform.split_handles op is useful for ensuring a statically known number of operations are
tracked by the source `handle` and to extract them into individual handles
that can be further manipulated in isolation.
In the process of making the op robust wrt to silenceable errors and the suppress mode, issues were
uncovered and fixed.
The main issue was that silenceable errors were short-circuited too early and the payloads were not
set. This resulted in suppressed silenceable errors not propagating correctly.
Fixing the issue triggered a few test failures: silenceable error returns now must properly set the results state.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D135426
In the Transform dialect extensions, provide the separate mechanism to
declare dependent dialects (the dialects the transform IR depends on)
and the generated dialects (the dialects the payload IR may be
transformed into). This allows the Transform dialect clients that are
only constructing the transform IR to avoid loading the dialects
relevant for the payload IR along with the Transform dialect itself,
thus decreasing the build/link time.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D130289
This revision revisits the implementation of applyToOne and its handling
of recoverable errors as well as propagation of null handles.
The implementation is simplified to always require passing a vector<Operation*>
in which the results are returned, resulting in less template instantiation magic.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D129185