The platform running on Apple Silicon does not seem to support the
negative nan. It causes the test failure where we explicitly specify the
negative nan bit pattern and check the output printed by the CRunnerUtil
function.
We can make the print function in the utility platform agnostic by using
the standard library functions (i.e. `std::isnan` and `std::signbit`) so
that we can run the test across platforms that do not support the
negative bit pattern.
I have added two test cases that would fail in the Apple Silicon
platform without print function changes.
```
$ uname -a
Darwin Kernel Version 23.3.0: Wed Dec 20 21:30:44 PST 2023; root:xnu-10002.81.5~7/RELEASE_ARM64_T6000 arm64
```
See:
https://discourse.llvm.org/t/test-failure-of-sparse-sign-test-in-apple-silicon/77876/3
Printing strings within integration tests is currently quite annoyingly
verbose, and can't be tucked into shared helpers as the types depend on
the length of the string:
```
llvm.mlir.global internal constant @hello_world("Hello, World!\0")
func.func @entry() {
%0 = llvm.mlir.addressof @hello_world : !llvm.ptr<array<14 x i8>>
%1 = llvm.mlir.constant(0 : index) : i64
%2 = llvm.getelementptr %0[%1, %1]
: (!llvm.ptr<array<14 x i8>>, i64, i64) -> !llvm.ptr<i8>
llvm.call @printCString(%2) : (!llvm.ptr<i8>) -> ()
return
}
```
So this patch adds a simple extension to `vector.print` to simplify
this:
```
func.func @entry() {
// Print a vector of characters ;)
vector.print str "Hello, World!"
return
}
```
Most of the logic for this is now shared with `cf.assert` which already
does something similar.
Depends on #68694
This reverts commit 9119325a5666e557a19f38a05525578b556c215b.
A buildbot is broken, probably because of this change breaking the
SHARED_LIBS=ON build more.
aligned_alloc was added in MacOS 10.15, some users want to support older
versions. The runtime functions makes this easy, so just put in a call
to posix_memalign, which provides the same functionality.
These functions don't depend on the C++ runtime and therefore belong to
CRunnerUtils. Clean up the macros on the way as `_MSC_VER` indicates the
compiler, not the platform, which is indicated by `_WIN32` and will be
present when, e.g., compiling with minGW.
Reviewed By: rdzhabarov
Differential Revision: https://reviews.llvm.org/D130025
The names of the functions that are supposed to be exported do not match the implementations. This is due in part to cac7aabbd8.
This change makes the implementations and declarations match and adds a couple missing declarations.
The new names follow the pattern of the existing `verify` functions where the prefix is maintained as `_mlir_ciface_` but the suffix follows the new naming convention.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D124891
Adding annotations on as-needed bases, currently only for memrefCopy, but in general all C API functions that take pointers to memory allocated/initialized inside the jit-compiled code must be annotated, to be able to run with msan.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123557
Instead, include `<cstdlib>` which is the canonical header containing
the declaration of `alloca()`.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D107699
While replacing linalg.copy with the more desired memref.copy
I found a bug in the support library for rank 0 memref copying.
The code would loop for something like the following, since there
is code for no-rank and rank > 0, but rank == 0 was unexpected.
memref.copy %0, %1: memref<f32> to memref<f32>
Note that a "regression test" for this will follow using the
sparse compiler migration to memref.copy which exercises this
case many times.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D106036
Exposing the C versions of the methods of the sparse runtime support lib
through header files will enable using the same methods in an MLIR program
as well as a C++ program, which will simplify future benchmarking comparisons
(e.g. comparing MLIR generated code with eigen for Matrix Market sparse matrices).
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D91316
(1) simplify integer printing logic by always using 64-bit print
(2) add index support (since vector<16xindex> is planned to be added)
(3) adjust naming convention print_x -> printX
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D88436
This generalizes printing beyond just i1,i32,i64 and also accounts
for signed and unsigned interpretation in the output.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D88290
Summary:
The "i1" (viz. bool) type does not have a proper equivalent on the "C"
size. So, to avoid any ABIs issues, we simply use print_i32 on an i32
value of one or zero for true and false. This has the added advantage
that one less function needs to be implemented when porting the runtime
support library.
Reviewers: ftynse, bkramer, nicolasvasilache
Reviewed By: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82048
Summary:
Two integration tests focused on i1 vectors, which exposed omissions
in the llvm backend which have since then been fixed. Note that this also
exposed an inaccuracy for print_i1 which has been fixed in this CL:
for a pure C ABI, int should be used rather than bool.
Reviewers: nicolasvasilache, ftynse, reidtatge, andydavis1, bkramer
Reviewed By: bkramer
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D81957
This fixes a number of warnings, where a function is re-defined after it is tagged as "being imported":
D:\llvm-project\mlir\lib\ExecutionEngine\CRunnerUtils.cpp(24,17): warning: 'print_i32' redeclared without 'dllimport' attribute: 'dllexport' attribute added [-Winconsistent-dllimport]
extern "C" void print_i32(int32_t i) { fprintf(stdout, "%" PRId32, i); }
^
D:\llvm-project\mlir\include\mlir/ExecutionEngine/CRunnerUtils.h(168,42): note: previous declaration is here
extern "C" MLIR_CRUNNERUTILS_EXPORT void print_i32(int32_t i);
^
Differential Revision: https://reviews.llvm.org/D76654
Summary:
On Windows, building `mlir_c_runner_utils` doesn't properly export
symbols, thus resulting in an implib not being created, which causes
an error when consuming LLVM from external projects.
Differential Revision: https://reviews.llvm.org/D75769
Summary:
This revision split out a new CRunnerUtils library that supports
MLIR execution on targets without a C++ runtime.
Differential Revision: https://reviews.llvm.org/D75257